

Specification Sheet

Product model: APA-104-1010

Sample number: APA-104-1010

Product description: 1.0x1.0x0.4mm Type 0.1Watt Power Embedded

(MSL: 4)

Version number: 01

Time:

2022-03-16

Cus	tomer a	pproval	Α	PA appr	oval
Approval	Audit	Confirmation	Approval Audit		Confirmation
			SIMON	JAMES	ANGEL
	d □D	visqualified	Stamp		
Stamp				Otanij	,

Change History

Date	Rev. No.	Changes/Reason of changes	Signature
2022-03-16	01	Initial Document	SIMON

CONTENTS

1 • Product overview	3
2 • Main Application Field	3
3 • Description	3
4 • Mechanical Dimensions	.4
5 • PIN configuration	.4
6 Recommended dimensions for PCB	.4
7 General description of product naming	5
8 · Electrical parameters	5
9 • Electrical/Optical Characteristics	5
10 • The IC electrical parameters	6
11 Switching characteristics	6
12 N The data transmission time	7
13 < Timing waveform	7
14 • The method of data transmission	8
15 • The data structure of 24bit	9
16 • The typical application circuit	9
17 Standard LED Performance Graph	10
18 Vackaging Standard	11
19 · Reliability Test	12

1. Product Overview :

APA-104-1010 is an embedded control type LED light source integrating control circuit and lightemitting circuit. It contains intelligent digital interface data latch signal shaping and amplifying drive circuit, power supply voltage regulator circuit, built-in constant current circuit and high precision RC oscillator. The output driver adopts the patented PWM technology, which effectively ensures the high color consistency of the light in the pixel.

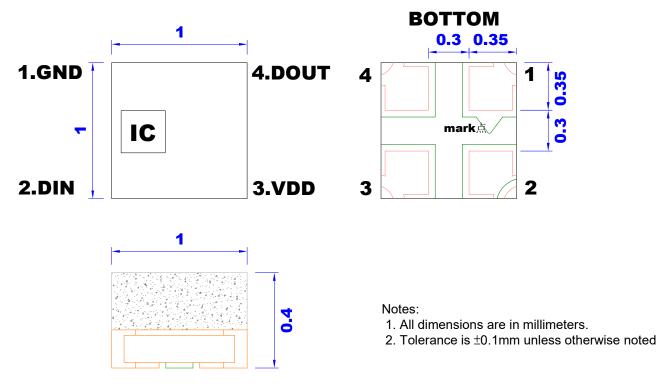
The data protocol being used is unipolar RZ communication mode. The 24-bit data is transmitted from the controller to DIN of the first element, and if it is accepted it is extracted pixel to pixel. After an internal data latch, the remaining data is passed through the internal amplification circuit and sent out on the DO port to the remaining pixels. The pixel is reset after the end of DIN. Using automatic shaping forwarding technology makes the number of cascaded pixels without signal transmission only limited by signal transmission speed.

The LED has a low driving voltage (which allows for environmental protection and energy saving), high brightness, scattering angle, good consistency, low power, and long life. The control circuit is integrated in the LED above.

2. Main Features :

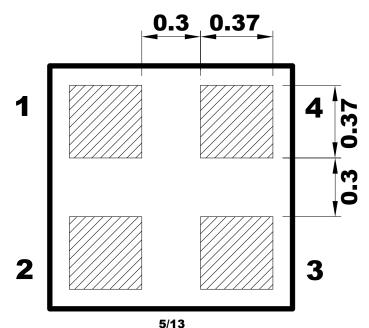
- Easy To Design
- Easy To Build
- Easy To Program

3. Description:


• EC LED internal integrated high quality external control line serial cascade constant current IC;

• built-in data shaping circuit, a pixel signal is received after wave shaping and output waveform distortion will not guarantee a line;

- The built-in power on reset and reset circuit, the power does not work;
- gray level adjusting circuit (256 level gray scale adjustable);
- red drive special treatment, color balance;
- line data transmission;
- plastic forward strengthening technology, the transmission distance between two points over 10M;
- •Using a typical data transmission frequency of 800 Kbps, when the refresh rate of 30 frames per sec


4. Mechanical Dimensions:

5. PIN configuration

NO.	Symbol	Function description
1	GND	Ground
2	DIN	Control data signal input
3	VDD	Power supply LED
4	DOUT	Control data signal output

6. Recommended dimensions for PCB

7. General description of product naming

2

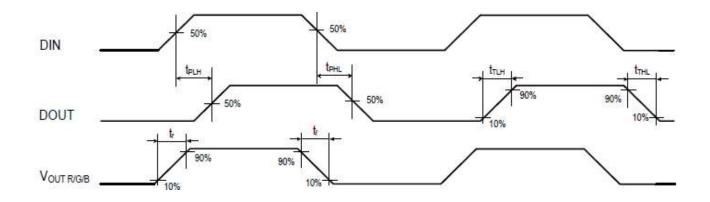
1	2	3
Supplier	IC series and current code	Package outline
The is Supplier Name	Refers to the 104 series with IC 5mA current version	1.0x1.0x0.4mm PCB package outline

8. Electrical parameters (Ta=25°C,VSS=0V) :

Parameter	Symbol	Range	Unit
Power supply voltage	VDD	+3.7~+5.5	V
Logic input voltage	V _{IN}	-0.5~VDD+0.5	V
Working temperature	Topt	-40~+80	°C
Storage temperature	Tstg	-40~+80	°C
ESD pressure(HBM)	V _{ESD}	2K	V
ESD pressure(DM)	V _{ESD}	200	V

9. Electrical/Optical Characteristics:

Orlan	APA-104-1010 5mA				
Color	Dominate wavelength(nm)	Luminance(mcd)			
Red	620-625	40-80			
Green	520-530	80-160			
Blue	460-470	20-40			


10. The IC electrical parameters (unless otherwise specified, TA=-20 ~ +70 °C, VDD=4.5 ~ 5.5V, VSS=0V):

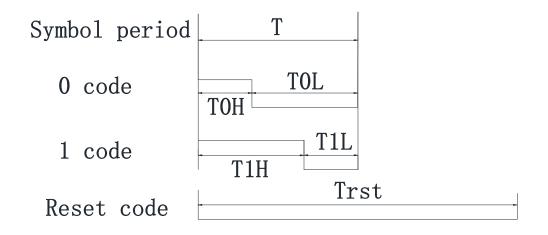
Parmeter	Symbol	Min	Typical	Max	Unit	Test conditions
The chip supply voltage	VDD	3.7	5.2	5.5	V	
The signal input flip	VIH	0.7*VDD			V	VDD=5.0V
threshold	VIL			0.3*VDD	V	DIN Input level
The frequency of PWM	F _{PWM}		4.0		KHZ	IOUT = 5mA, the out port is connected with 200 Ω resistor in series to VDD
Static power consumption	lod		0.25		mA	VDD = 4. 5V, IOUT "OFF"
Dout output current	Іон		15		mA	Dout output high, connect 10 Ω resistor in series to GND
Dout perfusion current	lol		-16		mA	Dout output is low, and the power supply can inject current to dout
Out R / g / B output current	Іоит		5		mA	VDD=5V, VDS =1.0V
Out R / b constant current inflection point voltage	VDS S		0.5		V	IOUT = 5mA
Constant current inflection point voltage of outg	Vds_s		0.7		V	IOUT = 5mA
Out R / g / B port withstand voltage	ΒV _{ουτ} R/G/Β		14		V	The out R / g / B port is closed and the leakage current is 1uA

11. Switching characteristics (VCC=5V Ta=25 °C):

Parameter	Symbol	Min	Typical	Max	Unit	Test conditions
The speed of data transmission	fDIN		800		KHZ	
DOUT transmission	TPLH		100		ns	DOUT port to ground
delay	TPHL		100		ns	load capacitance 30pF
IOLIT Pigg/Drop	Tr		200		ns	IOUT R / B = 3mA, out R / B port is connected with 200 Ω resistor in
IOUT Rise/Drop Time	Tf		280		ns	series to VDD, and load capacitance to ground is 30pF

12. The data transmission time :

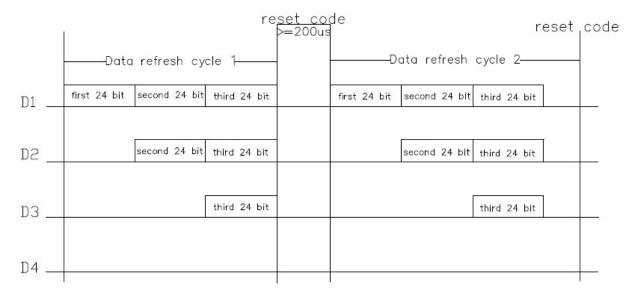
	Name		Standard value	Max.	Unit
т	Code period	1.20			μs
тон	0 code, high level time	0.20	0.32	0.40	μs
TOL	0 code, low level time	0.80			μs
T1H	1 code, high level time	0.65	0.74	1.00	μs
T1L	1 code, low level time	0.20			μs
Trst	Reset code,low level time	>200		-	μs


1. The protocol uses a unipolar zeroing code. Each symbol must have a low level. Each symbol in this protocol starts with a high level. The high time width determines the "0" or "1" code. .

2. When writing programs, the minimum symbol period is 1.2µs.

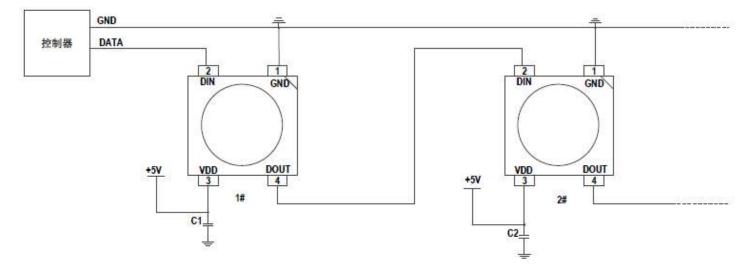
3. The high time of "0" code and "1" code should be in accordance with the stipulated range in the above table. The low time requirement of "0" code and "1" code is less than 20µs.

13. Timing waveform:


Input code:

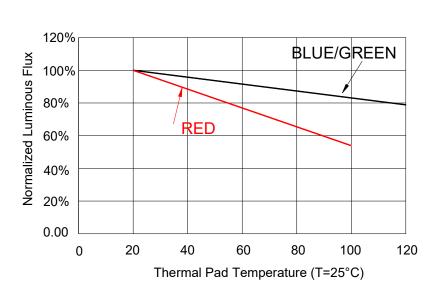
Connection mode:

14. The method of data transmission:

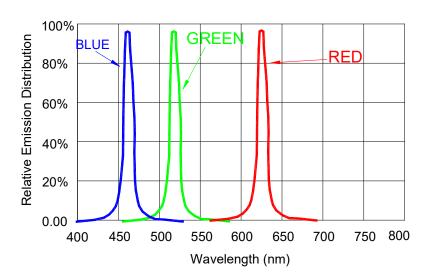

Note: the D1 sends data for MCU, D2, D3, D4 for data forwarding automatic shaping cascade circuit.

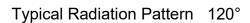
15. The data structure of 24bit:

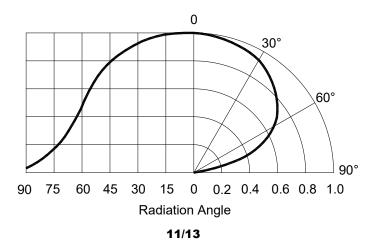
G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R 1	RO	B7	B6	B5	B4	B3	B2	B1	BO


Note: high starting, in order to send data (G7 - G6 -B0)

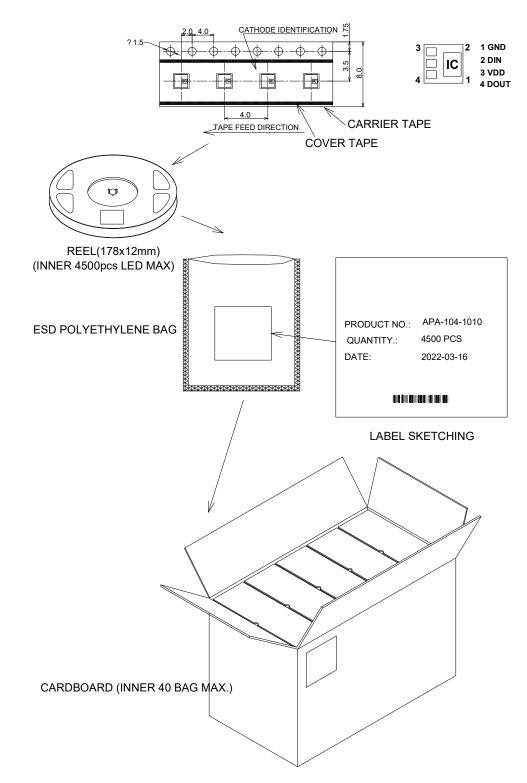
16. The typical application circuit:


Note: in the above application diagram, C1 and C2 are 100nF / 50V ceramic chip capacitors





17. Standard LED Performance Graph:



18. Packaging Standard:

APA-104-1010

The reel pack is applied in SMD LED. The LEDs are packed in cardboard boxes after packaging in normal or antielectrostatic bags. cardboard boxes will be used to protect the LEDs from mechanical shocks during transportation. The boxes are not water resistant and therefore must be kept away from water and moisture.

19. Reliability Test :

NO.	Test item	Test Conditions	Reference	Criterion
1	Thermal Shock	-20 ± 5° C ~ 80° C ± 5° C 15min~15min 100 cycles	MIL-STD-202G	0/22
2	High Temperature Storage	Ta= 100ºC 1000hrs	JEITA ED-4701 200 201	0/22
3	Low Temperature Storage	Ta= -40°C 1000hrs	JEITA ED-4701 200 202	0/22
4	High Temperature High Humidity Storage	Ta=85ºC RH=85% 1000hrs	JEITA ED-4701 100 103	0/22
5	Temperature Cycle	-20°C~25°C~80°C~25°C 30min~5min~30min~5min 100 cycles	JEITA ED-4701 100 105	0/22
6	Resistance to Soldering Heat	Tsld = 260°C, 10sec. 2 times	JEITA ED-4701 300 301	0/22
7	Room temp Life Test	Ta<35°C, IF: Typical current , 3000hrs	JESD22-A 108D	0/22

Criteria for Judging the Damage:

Item	Symbol	Test Condition	Limit	
			Min	Max
Luminous Intensity	IV	DC=5V, Typical current	Init. Value*0.7	
Resistance to Soldering Heat		DC=5V, Typical current	No dead lights or obvious damage	