
BTW68

Datasheet

30 A SCRs

TOP3 Isolated

Product status link	
BTW68	

Product	summary
I _{T(RMS)}	30 A
V _{DRM} /V _{RRM}	600 to 1200 V
I _{GT}	50 mA

Features

- On-state rms current: 30 A
- Blocking voltage: up to 1200 V
- Gate current: 50 mA
- UL 2500 V insulation (file ref E81734)

Applications

- Solid state relays
- Battery charging system
- Uninterruptible power supply
- Variable speed motor drive
- Industrial welding systems
- By pass AC switch

Description

Available in a high power insulated package, the BTW68 series is suitable for applications where power handling and power dissipation are critical such as solid state relays, welding equipment and high power motor control.

Based on a clip assembly technology, this device offers a superior performance in surge current handling capabilities.

Thanks to the internal ceramic pad, the device provides high voltage insulation (2500 V_{RMS}) and complies with UL standards (file ref: E81734).

1 Characteristics

Symbol	Parameters	Value	Unit			
I _{T(RMS)}	RMS on-state current (180° conduction angle)	30	Α			
I _{T(AV)}	Average on-state current (180° conduction angle)	19	A			
I _{TSM}	Non repetitive surge peak on-state current (full cycle, T _j initial = 25 °C,	t _i = 25 °C	420	Α		
'I SM	V _R = 0 V)	t _p = 10 ms	y-20 0	400		
l ² t	I ² t value for fusing	T _j = 25 °C	800	A ² s		
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100$ ns	T _j = 125 °C	100	A/µs		
I _{GM}	Peak gate current	T _j = 125 °C	8	А		
P _{G(AV)}	Average gate power dissipation	1	W			
T _{stg}	Storage junction temperature range					
Τ _j	Operating junction temperature range	-40 to +125	°C			
V _{GRM}	Maximum peak reverse gate voltage	5	V			

Table 1. Absolute maximum ratings

Table 2. Electrical characteristics (T_j = 25°C, unless otherwise specified)

Symbol	Test co			Value	Unit	
I _{GT}	V_D = 12 V, R_I = 33 Ω		Min.	50	mA	
V _{GT}	- VD - 12 V, IXL - 50 X2				1.5	V
V _{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$		T _j = 125 °C	Min.	0.2	V
t _{gt}	V_D = V_{DRM} , I_G = 200 mA, dI_G/dt = 1.5 A/µ	S		Тур.	2	μs
I _H	I _T = 500 mA, gate open		Max.	75	mA	
١L	$I_G = 1.2 \times I_{GT}$				40	mA
al) (/alt	$\lambda = 67.0$ $\lambda = concentration$	V _{DRM} = 800 V	T = 125 °C	Min.	500	V/µs
dV/dt	$V_D = 67 \%$, V_{DRM} gate open	V _{DRM} = 1000 V	— T _j = 125 °C		250	
tq					100	μs
V _{TM}	I _{TM} = 60 A, t _p = 380 μs				2.1	V
I _{DRM}	$T_j = 25 \ ^{\circ}C$				20	μA
I _{RRM}	V _{DRM} = V _{RRM}	T _j = 125 °C	Max.	6	mA	

Table 3. Thermal resistance

Symbol	Parameters	Value	Unit
R _{th(j-c)}	Junction to case (D.C.)	1.1	°C/W
R _{th(j-a)}	Junction to ambiant	50	C/W

1.1 Characteristics (curves)

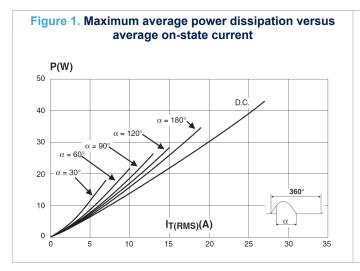
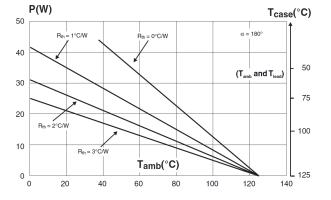



Figure 2. Correlation between maximum average power dissipation and maximum allowable temperatures

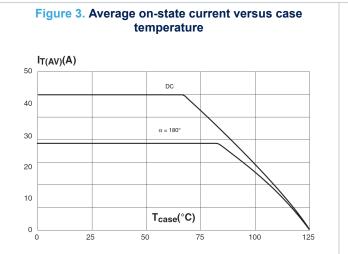
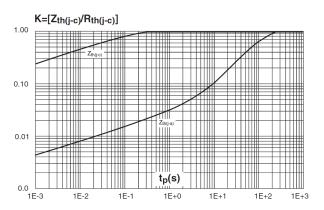
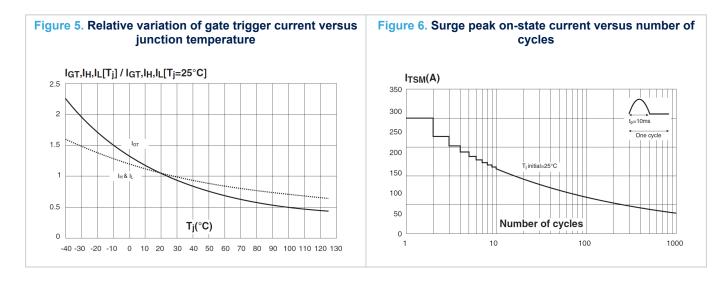
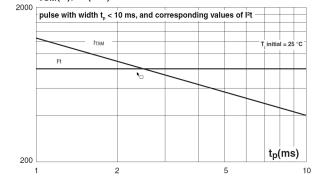




Figure 4. Relative variation of thermal impedance versus pulse duration



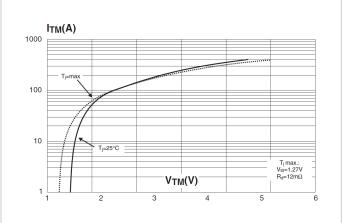
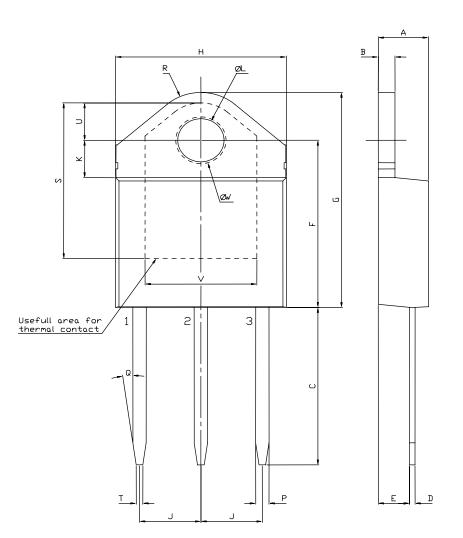


Figure 7. Non repetitive surge peak on-state current and corresponding value of I²t versus sinusoidal pulse width

I_{TSM}(A), I²t (A²s)

Figure 8. On-state characteristics (maximum values)



2 Package information

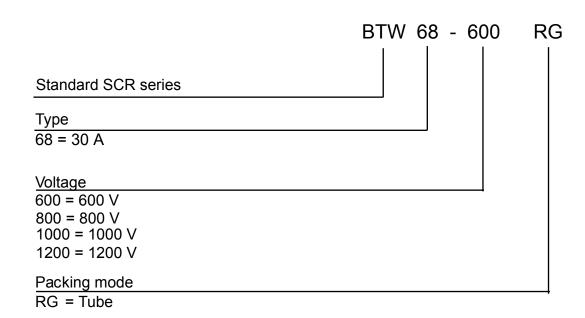
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 TOP3 Ins. package information

- Epoxy meets UL94, V0
- Lead-free packages
- Recommended torque: 1.05 N·m (max. torque: 1.2 N·m)

Figure 9. TOP3 insulated and non-insulated package outline

			[Dimensions		
Ref.	ef.	mm			Inches ⁽¹⁾)
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	0.1732		0.1812
В	1.45		1.55	0.0570		0.0611
С	14.35		15.60	0.5649		0.6142
D	0.50		0.70	0.0196		0.0276
E	2.70		2.90	0.1062		0.1142
F	15.80		16.50	0.6220		0.6497
G	20.40		21.10	0.8031		0.8308
н	15.10		15.50	0.5944		0.6103
J	5.40		5.65	0.2125		0.2225
к	3.40		3.65	0.1338		0.1438
L	4.08		4.17	0.1606		0.1642
Р	1.10		1.30	0.0430		0.0510
R		4.60			0.1811	


Table 4. TOP3 insulated and non-insulated mechanical data

1. Inches given for reference only

3 Ordering information

Figure 10. Ordering information scheme

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
BTW68-600RG	BTW68-600				
BTW68-800RG	BTW68-800	TOD2 Inc	4.5.0	30	Tube
BTW68-1000RG	BTW68-1000	TOP3 Ins.	4.5 g	30	Tube
BTW68-1200RG	BTW68-1200				

Table 6. Product Selector

Part numbers —		Voltage (xxx)			Sonoitivity	Paakaga	
	600 V	800 V	1000 V	1200 V	Sensitivity	Package	
BTW68-600RG	Х						
BTW68-800RG		Х			- 50 mA	50 m A	TOP3 Ins.
BTW68-1000RG			Х			TOP5 Ins.	
BTW68-1200RG				Х			

Revision history

Table 7. Document revision history

Date	Revision	Changes
Mar-1995	1	Initial release.
13-Feb-2006	2	TOP3 Insulated delivery mode changed from bulk to tube.ECOPACK statement added.
29-Jul-2010	3	Deleted part number BTW68-200RG. Updated <i>Table 2</i> , <i>Figure 7</i> and alpha angle <i>in Figure 1</i> .
06-Oct-2023	4	Updated Table 4.

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved