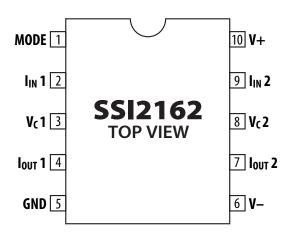
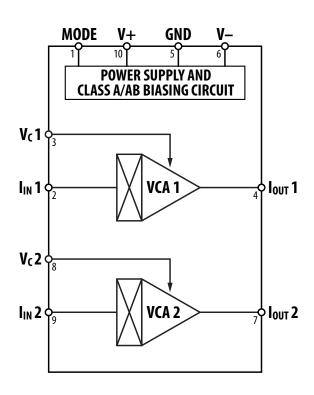
SSI2162


FATKEYS™ DUAL VOLTAGE CONTROLLED AMPLIFIER

The SSI2162 is a versatile VCA building block for high-performance audio applications. Two independent channels provide voltage control of current-mode inputs and outputs for a gain range from +20dB to -100dB, with control provided by a ground-referenced -33mV/dB constant.

The device offers considerable flexibility for a wide range of design goals and applications. A unique mode control allows selection of Class A, Class AB, or in-between using a single resistor. In addition, improved current handling allows use of lower value input resistors for reduced output noise without loss of headroom. Both channels can be parallel-connected for further noise improvement. Finally, SSI2162 VCA channels can be used as high-quality OTA building blocks for a variety of applications such as voltage controlled filters, exponential generators, and antilog converters.

The SSI2162 will operate on supplies as low as +8V for battery-powered devices such as guitar pedals, or up to $\pm18V$ in systems where maximum headroom is desired.


The SSI2162 is part of a family of affordable high-performance VCA's from Sound Semiconductor. The SSI2164 offers four VCA's in a compact SOP package with lowest cost-per VCA, and the single-channel SSI2161 provides lowest noise.

PIN CONNECTIONS
10-LEAD SSOP

FEATURES

- Two High-Performance VCA's in a Single Package
- Pin-Selectable Class A or AB Operation
- 3dB Lower Noise than SSI2164
- 123dB Dynamic Range (Class AB)
- Low Distortion Typical 0.025% (Class A)
- Large Gain Range: -100dB to +20dB
- Ultra-Compact 10-Lead SSOP Package
- **■** ±4V to ±18V Operation
- No External Trimming
- Low Control Feedthrough Typically -60dB

FUNCTIONAL BLOCK DIAGRAM

SPECIFICATIONS ($V_S = \pm 15V$, $V_{IN} = 0.775V_{RMS}$, f = 1kHz, $A_V = 0$ dB, Class AB, $T_A = 25$ °C; using Figure 1 circuit without diode)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
POWER SUPPLY						
Supply Voltage Range	Vs		±4		±18	V
Supply Current	Is	Class AB, V _C = GND		±6	±8	mA
Supply Current	Is	Class A, V _C = GND, I _M = 1mA		±8.0		mA
Power Supply Rejection Ratio	PSRR	60Hz		90		dB
CONTROL PORTS						
Input Impedance			4.5	5	5.5	kΩ
Gain Constant		After 60 seconds of operation		-33		mV/dB
Gain Constant Temp. Coefficient				-3300		ppm/°C
Control Feedthrough		$A_V = 0$ dB to -40 dB		-60		dB
Gain Accuracy		$A_V = 0$ dB		±0.30		dB
		A _V = +20dB		±0.55		dB
		$A_V = -20$ dB		±0.55		dB
Channel-to-Channel Gain Matching		$A_V = 0$ dB		0.07		dB
		$A_{V} = -40 dB$		0.24		dB
Maximum Attenuation				-100		dB
Maximum Gain				+20		dB
SIGNAL INPUTS						
Input Bias Current	I _B			±10		nA
Input Current Handling				1.9		mA _P
SIGNAL OUTPUTS						
Output Offset Current		V _{IN} = GND		±150		nA
Output Compliance				±100		mV
PERFORMANCE						
Output Noise		Class AB (20Hz -20kHz, unweighted)				
$(^{1}I_{M}=1mA)$		$R_{IN/OUT} = 15k\Omega$		-96		dBu
		$R_{IN/OUT} = 10k\Omega$		-99		dBu
		$R_{IN/OUT} = 7.5k\Omega$		-101		dBu
		$R_{IN/OUT} = 3.74k\Omega$		-105		dBu
		Class A (20Hz -20kHz, unweighted) ¹				
		$R_{IN/OUT} = 15k\Omega$		-84		dBu
		$R_{IN/OUT} = 10k\Omega$		-88		dBu
		$R_{IN/OUT} = 7.5k\Omega$		-90		dBu
		$R_{IN/OUT} = 3.74k\Omega$		-96		dBu
Headroom	HR	1% THD		+22		dBu
Total Harmonic Distortion	THD	Class AB (80kHz BW)		0.05		0/
$(^{1}I_{M}=1mA)$		$A_V = 0$ dB		0.05		%
		$A_V = 0$ dB, $V_{IN} = -17$ dBu		0.025		%
		A _V = +20dB		0.20		%
		$A_V = -20 dB$		0.045		%
		Class A (80kHz BW) ¹		0.005		0/
		$A_V = 0$ dB		0.025		%
		$A_V = 0$ dB, $V_{IN} = -5$ dBu		0.015		%
		A _V = +20dB		0.17		%
0, 10 "		$A_V = -20$ dB		0.025		%
Channel Separation		0 10 5		-110 -500		dB
Unity Gain Bandwidth		C _F = 10pF		500		kHz
Slew Rate	SR	C _F = 10pF		700		μΑ/μs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±20V	
Storage Temperature Range	-65°C to +150°C	
Operating Temperature Range	-40°C to +85°C	
Lead Temperature (Soldering, 10 sec)	260°C	
Mode Current (I _M ; Pin 1 to Pin 10 via R _M)	2.0mA	
Control Pin Voltage (Pins 3, 8)	V- to V+	

ORDERING INFORMATION

Part Number Package Type/Container		Quantity	
SSI2162SS-TU	10-Lead SSOP* - Tube	100	
SSI2162SS-RT	10-Lead SSOP* - Tape and Reel	4000	

^{*}SSI Package ID "PSSL10"

Mechanical drawing available at www.soundsemiconductor.com

Pin(s)	Name	Description	
1	MODE	Current into this pin sets VCA core to operate as Class A (lowest THD), AB (lowest noise), or inbetween, set by external resistor. Leave open for Class AB operation.	
2, 9	I _{IN} x	Ground-referenced current inputs; each requires RC network.	
3, 8	V _C x	Ground-referenced control port with a –33mV-per-dB constant.	
4, 7	I _{OUT} x	Ground-referenced current ouput.	
5	GND	Connect to analog signal ground with short, low inductance trace.	
6	V-	Negative supply. Recommend 100nF local decoupling capacito placed as close to package as possible with a low inductance trace to ground.	
10	V+	Positive supply. Recommend 100nF local decoupling capacitor placed as close to package as possible with a low inductance trace to ground.	

PIN DESCRIPTIONS ("x" refers to one of the two channels)

USING THE SSI2162

The SSI2162 is a two-channel voltage controlled amplifier with a control range from +20dB to -100dB. Each VCA is an independent current-in, current-out device with a separate exponential voltage control port. Only the mode control affects both channels; otherwise designers have great latitude on use of each channel for a given application. Basic operation is described below; see the "Principles of Operation" section for further details on inner workings of the device and an application section that follows.

Signal Inputs

Figure 1 shows the basic application circuit for one channel. A resistor converts the input voltage to an input current, and a 110 Ω resistor in series with a 2200pF capacitor connected to ground ensures stable operation. The SSI2162 is quite tolerant of RC network selection, but 110 Ω /2200pF has been proven to work well over a wide range of R_{IN} values.

A $10k\Omega$ value for R_{IN} is recommended for most applications, but can range from $3.75k\Omega$ to $100k\Omega$ — lower values will produce the best noise performance at some cost in distortion.

Maximum input current handling is approximately 2mA peak. This input current "headroom" is only likely to be a consideration when using R_{IN} values of $10\text{k}\Omega$ and below with supplies of $\pm 12\text{V}$ and higher. In such cases, one may want to design the signal chain for a maximum input current of 1.8mA to allow adequate headroom.

An optional series-connected 22µF capacitor is recommended for improved control feedthrough.

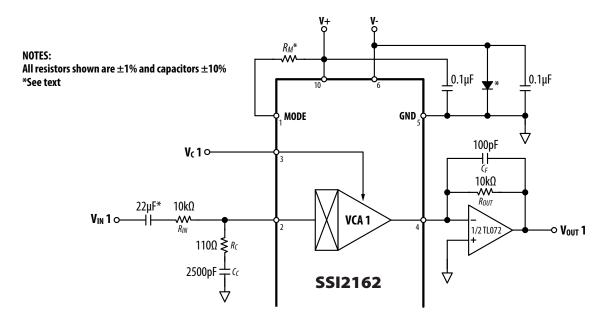


Figure 1: Typical Application Circuit