

Arduino Nano 33 IoT

The ease of use of a Nano board with the addition of secure IoT and BT connectivity.

SKU: 7630049201460

Country of origin: IT

Taric: 85235210

EECN: EAR-99

HTS: 8542310001

Getting Started: https://www.arduino.cc/en/Guide/NANO33IoT

Overview

This small, robust and powerful board has WiFi and Bluetooth connectivity that combined with its low power architecture makes it a practical and cost effective solution for your connected projects.

Arduino Nano 33 IoT is fully compatible with the <u>Arduino IoT Cloud</u> and supports full TLS secure transport: the ATECC608A cryptochip stores the cryptographic keys in hardware, offering a very high level of security for this class of products. The integration with the Arduino IoT Cloud offers also a very efficient way of setting up online dashboards with little coding and minimal effort .

In the same iconic size of the Arduino Nano, the Arduino Nano 33 IoT hosts an Arm Cortex-M0+ SAMD21 processor, a WiFi and Bluetooth module based on ESP32, a 6 axis Inertial Measurement Unit (IMU) and a crypto chip which can securely store certificates and pre shared keys.

The board can either be used in a breadboard (when mounting pin headers), or as a SMT module, directly soldering it via the castellated pads.

Getting Started

In the <u>Getting Started section</u>, you can find all the information you need to configure your board, use the <u>Arduino Software (IDE)</u>, and start to tinker with coding and electronics.

Do you want to learn more? Don't miss the <u>interview with Dario Pennisi</u>, Arduino hardware and firmware development manager, who led the development of this board.

Tech Specs

This board is based on the **SAMD21G18A** microcontroller.

Clock up to 48MHz

Flash 256KB SRAM 32KB

Please note: Arduino Nano 33 IoT only supports 3.3V I/Os and is **NOT** 5V tolerant so please make sure you are not directly connecting 5V signals to this board or it will be damaged. Also, as opposed to Arduino Nano boards that support 5V operation, the 5V pin does NOT supply voltage but is rather connected, through a jumper, to the USB power input.

To avoid such risk with existing projects, where you should be able to pull out a Nano and replace it with the new Nano 33 IoT, we have the 5V pin on the header, positioned between RST and A7 that is not connected as default factory setting. This means that if you have a design that takes 5V from that pin, it won't work immediately, as a precaution we put in place to draw your attention to the 3.3V compliance on digital and analog inputs.

5V on that pin is available only when two conditions are met: you make a solder bridge on the two pads marked as VUSB and you power the NANO 33 IoT through the USB port. If you power the board from the VIN pin, you won't get any regulated 5V and therefore even if you do the solder bridge, nothing will come out of that 5V pin. The 3.3V, on the other hand, is always available and supports enough current to drive your sensors. Please make your designs so that sensors and actuators are driven with 3.3V and work with 3.3V digital IO levels. 5V is now an option for many modules and 3.3V is becoming the standard voltage for electronic ICs.

The communication on WiFi and Bluetooth is managed by a NINA W102 ESP32 based module. The module is connected to the SAMD21 microcontoller with an SPI BUS and a serial port through the following pins:

SAMD21 Pin	SAMD21 Acronym	NINA Pin	NINA Acronym	Description
13	PA8	19	RESET_N	Reset
39	PA27	27	GPIO0	Attention Request
41	PA28	7	GPIO33	Acknowledge
23	PA14	28 / 21	GPIO5 / GPIO19	SPI CS / UART RTS
24	PA15	29 / 20	GPIO18 / GPIO22	SPI CLK / UART CTS
22	PA13	1	GPIO21	SPI MISO
21	PA12	36	GPIO12	SPI MOSI
31	PA22	23	GPIO3	Processor TX -> Nina RX
32	PA23	22	GPIO1	NINA TX -> Processor RX

Some of the NINA W102 pins are connected to the 15+15 pins headers/pads and can be directly driven by the module's ESP32; in this case it is necessary that the SAMD21 corresponding pins are aptly tri-stated. Below is a list of such signals:

SAMD21 Pin	SAMD21 Acronym	NINA Pin	NINA Acronym	Header Description
48	PB03	8	GPIO21	A7
14	PA09	5	GPIO32	A6
8	PB09	31	GPIO33	A5/SCL
7	PB08	35	GPIO5 / GPIO19	A4/SDA

The IMU is a LSM6DS3 and it is managed through I2C.

The crypto chip is an ATECC608A and has a supporting library that is used by the WiFiNINA library.

The board has a two 15 pins connectors - one on each side -, pin to pin compatible with the original Arduino Nano.

Pin	Funcion	Туре	Description
1	D13/SCK	Digital	SPI SCK; GPIO
2	+3V3	Power Out	Internally generated power output to external devices
3	AREF	Analog	Analog Reference; can be used as GPIO
4	A0/DAC0	Analog	ADC in/DAC out; can be used as GPIO
5	A1	Analog	ADC in; can be used as GPIO
6	A2	Analog	ADC in; can be used as GPIO
7	A3	Analog	ADC in; can be used as GPIO
8	A4/SDA	Analog	ADC in; I2C SDA; Can be used as GPIO (*)
9	A5/SCL	Analog	ADC in; I2C SCL; Can be used as GPIO(*)
10	A6	Analog	ADC in; can be used as GPIO
11	A7	Analog	ADC in; can be used as GPIO
12	V_{USB}	Power In/Out	Normally NC; can be connected to $V_{\mbox{USB}}$ pin of the USB connector by shorting a jumper
13	RST	Digital In	Active low reset input (duplicate of pin 18)
14	GND	Power	Power Ground
15	VIN	Power In	Vin Power input
16	TX	Digital	USART TX; can be used as GPIO
17	RX	Digital	USART RX; can be used as GPIO
18	RST	Digital	Active low reset input (duplicate of pin 13)
19	GND	Power	Power Ground
20	D2	Digital	GPIO

```
21 D3/PWM Digital
                       GPIO; can be used as PWM
22 D4
             Digital
                       GPIO
23 D5/PWM
            Digital
                       GPIO; can be used as PWM
24 D6/PWM
            Digital
                       GPIO; can be used as PWM
25 D7
             Digital
                       GPIO
26 D8
             Digital
                       GPIO
27 D9/PWM Digital
                       GPIO; can be used as PWM
28 D10/PWM Digital
                       GPIO; can be used as PWM
29 D11/MOSI Digital
                       SPI MOSI; can be used as GPIO
30 D12/MISO Digital
                       SPI MISO: can be used as GPIO
```

(*) As opposed to other Arduino Nano boards, pins A4 and A5 have an internal pull up and default to be used as an I²C Bus so usage as analog inputs is not recommended. Opposed to Arduino Nano boards that support 5V operation, the 5V pin does NOT supply voltage but is rather connected, through a jumper, to the USB power input.

On the bottom side of the board, under the communication module, **debug signals** are arranged as 3x2 test pads with 100 mil pitch. Pin 1 is the bottom left one with the USB connector on the left and the test pads on the right

Pin	Function	Type	Description
1	+3V3	Power Out	Internally generated power output to be used as voltage reference
2	SWD	Digital	SAMD11 Single Wire Debug Data
3	SWCLK	Digital In	SAMD11 Single Wire Debug Clock
4	UPDI	Digital	ATMega4809 update interface
5	GND	Power	Power Ground
6	RST	Digital In	Active low reset input

Documentation

OSH: Schematics

The Arduino Nano 33 IoT is open-source hardware! You can build your own board using the following files:

EAGLE FILES IN .ZIP SCHEMATICS IN .PDF