

NPN Silicon Power Darlington Transistors are designed for use in automotive ignition, switching and motor control applications

Features:

- Collector-Emitter Sustaining Voltage $V_{CEO~(sus)}$ = 380 V (Minimum) Collector-Emitter Saturation Voltage $V_{CE~(sat)}$ = 2.9 V (Maximum) at I_C = 10 A
- 10 A Rated continuous collector current

D 1 2 3 F	M
H - H - K	

Pin 1. Base 2. Collector 3. Emitter

Dimensions	Minimum	Maximum
Α	20.63	22.38
В	15.38	16.2
С	1.9	2.7
D	5.1	6.1
E	14.81	15.22
F	11.72	12.84
G	4.2	4.5
Н	1.82	2.46
I	2.92	3.23
J	0.89	1.53
K	5.26	5.66
L	18.5	21.5
М	4.68	5.36
N	2.4	2.8
0	3.25	3.65
Р	0.55	0.7

NPN TIP162

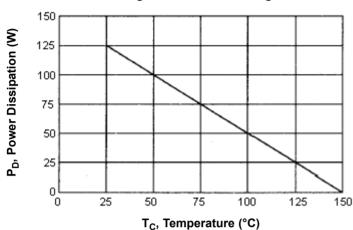
10 A Darlington Power Transistor 380 V 125 W

Dimensions: Millimetres

Maximum Ratings

Characteristic	Symbol	Rating	Unit		
Collector-Emitter Voltage	V _{CEO}	380			
Collector-Base Voltage	V _{CBO}	300	V		
Emitter-Base Voltage	V _{EBO}	5			
Collector Current -Continuous -Peak	I _C 10		А		
Base Current	I _B	1			
Total Power Dissipation at T _C = 25°C Derate Above 25°C	P _D	125 1	W W/°C		
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-65 to +150	°C		

www.element14.com www.farnell.com www.newark.com



Thermal Characteristics

Characteristic	Symbol	Maximum	Unit	
Thermal Resistance Junction to Case	Rθjc	1	°C / W	

Figure - 1 Power Derating

Electrical Characteristics (T_C = 25°C unless otherwise noted)

Charac	teristic	Symbol	Minimum	Maximum	Unit		
Off Characteristics							
Collector Cut off Current (V _{CE} = 380 V, I _B = 0)		I _{CEO}	-	1	 Λ		
Emitter Cut off Current $(V_{EB} = 5 \text{ V}, I_C = 0)$				100	mA		
On Characteristics (1)							
DC Current Gain (I _C = 4 A, V _{CE} = 2.2 V)	h _{FE}	200	-	-			
Collector-Emitter Saturation \($I_C = 6.5 \text{ A}, I_B = 0.1 \text{ A}$ \) $(I_C = 10 \text{ A}, I_B = 1 \text{ A})$	/oltage	V _{CE (sat)}	-	2.8 2.9			
Base-Emitter Saturation Voltage (I _C = 6.5 A, I _B = 0.1 A)		V _{BE (sat)}	-	2.2	V		
Diode Forward Voltage (I _F = 10 A)		V _F	-	3.5			
Switching Characteristics							
Delay Time	$V_{CC} = 33 \text{ V, } I_{C} = 6.5 \text{ A}$	t _d	0.3 (Typical)	-			
Rise Time	$I_{B1} = -I_{B2} = 100 \text{ mA},$ $I_p = 20 \mu\text{s}, \text{ duty cycle } 2\%$	t _r	1.5 (Typical)	-			
Storage Time		t _s	2.3 (Typical)	-	μs		
Fall Time		t _f	2.8 (Typical)	-			

(1) Pulse Test : Pulse width = 300 µs, duty cycle ≤2%

28/06/12 V1.1

Figure - 2 DC Current Gain

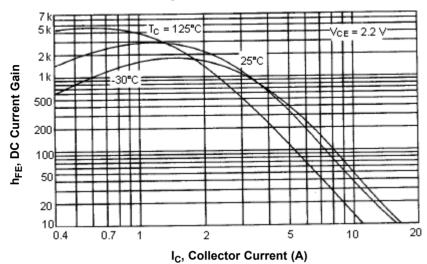


Figure - 3 Base-Emitter Voltage

Figure - 4 Base-Emitter Voltage

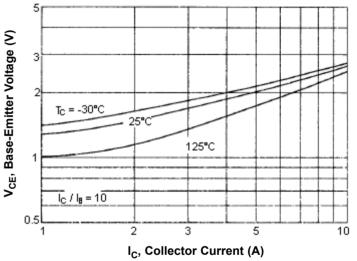


Figure - 5 Collector-Emitter Saturation Voltage

10

1c/I_B = 65

1 25°C

1 25°C

1 C, Collector Current (A)

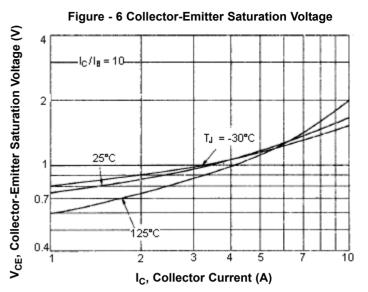
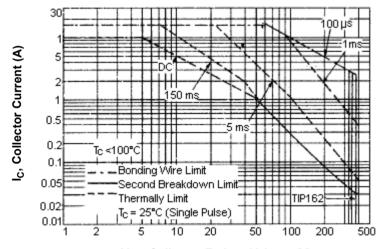



Figure - 7 Active Region Safe Operating Area

V_{CE}, Collector Emitter Voltage (V)

There are two limitations on the power handling ability of a transistor : average junction temperature and second breakdown safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate The data of Figure - 7 is based on $T_{J\,(PK)}$ = 150°C; T_C is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J\,(PK)}\!\le\!150^\circ\text{C}$, At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown

Specification Table

I _{C (av)} Maximum (A)	V _{CEO} Maximum (V)	h _{FE} Minimum	I _C (A)	P _{tot} at 25°C (W)	Package	Туре	Part Number
10	380	200	4	125	TO-247	NPN	TIP162

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information information in discount or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2012.

Page <4> 28/06/12 V1.1