

The "Three Fives" Discrete 555 Timer kit is a faithful and functional transistor-scale replica of the classic NE555 timer integrated circuit.

Designed by Eric Schlaepfer (tubetime.us), in collaboration with Evil Mad Scientist Laboratories.

Main Specifications

- Kit type:Through-hole soldering kit
- Assembly instructions: Printed, included with kit
- Assembly time: 30-60 minutes (typical)
- Function: Equivalent circuit to NE555 timer IC. Some performance characteristics differ; Refer to Abs. Maximum ratings and Electrical Characteristics
- RoHS compliance: All kit components are RoHS compliant (lead free)
- Connection methods:Terminal posts (bare wire, lug, or alligator clip) or solder

The "Three Fives" Discrete 555 Timer

Re-create one of the most classic, popular, and all-around useful chips of all time.

Block Diagram / Pinout

Kit Contents

Contents of the Three Fives kit:

- The Three Fives printed circuit board (extra thick 0.100'), pre-fitted with eight 8-32 threaded inserts
- The transistors and resistors required to assemble the kit
- Eight thumbscrews (terminal posts) with color-coded caps (I red, I black, 6 gray)
- Two-piece "IC Legs" stand, anodized aluminum
- Mounting screws and spacers for attaching the "IC Legs" stand
- Printed assembly instructions (not shown)

Tools and materials required for assembly (not included with kit):

- Soldering iron
- Solder
- Wire clippers
- Phillips head screwdriver (\#2 size recommended).

Schematic Diagram

Electrical Components

Reference	Qty	Type	Value
QI-4, Q14-18, Q20-22, Q24	13	NPN Transistor	2N3904
Q5-13, Q19A, Q19B, Q23, Q25	13	PNPTransistor	2N3906
RI, R3, R7, R8, R9, RII, RI5	7	Resistor, 1/4W	4.7 k
R2	1	Resistor, 1/4W	820
R4	1	Resistor, 1/4W	1 k
R5	1	Resistor, 1/4W	10 k
R6, RI7	1	Resistor, 1/4W	100 k
RIO	1	Resistor, 1/4W	15 k
RI2	I	Resistor, 1/4W	6.8 k
RI3	I	Resistor, 1/4W	3.9 k
RI4	1	Resistor, 1/4W	220
RI6	1	Resistor, 1/4W	100

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	V_{cc}	18	V
Output current	IO_{0}	± 100	mA
Input voltage (Control Voltage, Threshold, Trigger, Reset pins)	V_{IN}	$\mathrm{V}_{\mathrm{cc}}{ }^{1}$	

Notes:

1. Exception for kit version 1.0 (without R17 and notch in PCB outline) only: Input voltage at reset pin ($\mathrm{V}_{\mathrm{RST}}$) should be kept to lesser of V_{CC} or 6.6 V . For $\mathrm{V}_{\mathrm{cc}}>6.6 \mathrm{~V}$, Reset pin may be pulled up to Vcc through a 100 kilohm resistor.

Electrical Characteristics

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply Voltage	Vcc		4		18	V
Supply Current	Icc	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, Low state		3		mA
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$, Low state		10		
Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$		3.3		V
		$\mathrm{V}_{C C}=15 \mathrm{~V}$		10.0		
Threshold Current	$\mathrm{I}_{\text {TH }}$			10		nA
Trigger Voltage	$\mathrm{V}_{\text {TR }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		1.67		V
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		5.0		
Trigger Current	$I_{\text {TR }}$	TRIG at 0 V		10		nA
Reset Voltage ${ }^{1}$	$V_{\text {RST }}$			0.4		V
Reset Current	$\mathrm{I}_{\text {RST }}$			0.2		mA
Control Voltage Level	V_{c}	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		3.33		V
Discharge Pin Leakage	ILkg			1		nA
Discharge Pin Output Voltage Low	$V_{D L}$	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{lo}=-5 \mathrm{~mA}$		50		mV
Output Pin Voltage High ${ }^{2}$	VOH	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, No load		4.5		V
		$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{lo}=100 \mathrm{~mA}$		3.3		V
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{lo}=100 \mathrm{~mA}$		13.3		V
Output Pin Voltage Low ${ }^{2}$	VoL	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{0}=-5 \mathrm{~mA}$		50		mV
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{0}=-8 \mathrm{~mA}$		100		mV
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{l}_{0}=-10 \mathrm{~mA}$		0.1		V
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{l}_{0}=-50 \mathrm{~mA}$		0.4		V
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{lo}^{\prime}=-100 \mathrm{~mA}$		2.0		V

Notes:

1. Specified with trigger input high.
2. For long term static operation, limit to 50 mA maximum.

Printed Circuit Board:

Physical layout and mounting holes

Note: All dimensions are in INCHES.

Additional physical specifications:

- Printed Circuit Board size: 5.215×3.175 inches $(13.25 \times 8.06 \mathrm{~cm})$ wide
- PCB thickness: $0.100^{\prime \prime}(2.54 \mathrm{~mm})$ nominal, not including threaded inserts
- PCB thickness: $0.196^{\prime \prime}(4.98 \mathrm{~mm})$ nominal, including threaded inserts
- Overall thickness: Allow 0.5 " min. clearance above and below circuit board
- Mounting holes: Six \#6 clearance holes provided. See drawing for locations.
- Nominal height of "IC legs" stand: I. 25 inches (3.175 cm), not including spacers
- Nominal height of "IC legs" stand: 1.3 I inches $(3.33 \mathrm{~cm})$, including spacers, to bottom of PCB.

Additional Photos

Assembled PCB with stand
(Terminal posts removed)

Assembled kit with stand and terminal posts (top view)

Suggested Circuits

LED flasher:

Variable-speed Larson Scanner

