1300Henley Court

Pullman, WA 99163

509.334.6306

BEYOND THEORY www.digilentinc.com

Analog Shield Application Note 2: FFT Spectrum Visualizer

Revised June 3, 2014
Author: William J. Esposito, Doctoral Candidate and Gregory T.A. Kovacs, Professor of Electrical
Engineering, Stanford University

This document was edited and adapted for MPIDE by Digilent. The original document was prepared by
William Esposito and Gregory T.A. Kovacs at Stanford University.

Overview

The FFT Spectrum Visualizer takes in a signal (sound, electricity,
noise) and shows the tones that make up that signal.

For example, in a musical piece, two musical instruments could be
playing tones at different frequencies. The spectrum reveals
exactly what tones make up that sound.

It displays the spectrum of tones in a signal acquired with the
Analog Shield and computes the spectrum using the Fast Hartley

Transform (FHT) library from Open Music Labs
(http://wiki.openmusiclabs.com/wiki/ArduinoFHT). The FHT Figure 1. FFT spectrum visualizer.

function is a modified version of the Fast Fourier Transform optimized

for strictly real input data .

The system offers touchscreen selectable log and linear scaling, as
well as selectable frequency span from 1 kHz to 30 kHz.

Hardware

The FFT Spectrum Visualizer is built around the Arduino™ and two
shields: the Digilent Analog Shield* and the Adafruit® 2.8” TFT Touch
Shield (v2), a 320x240 pixel touchscreen LCD. The Analog Shield is
used for signal acquisition and the Adafruit Touch LCD Shield is to

display the spectrum.

The Arduino UNO™ R3 Can be found at: http://store.arduino.cc/

The Adafruit RGB LCD Kit can be found at:
http://www.adafruit.com/products/1651

The Analog Shield can be found at: Figure 3. Analog Shield, showing space for
http://www.digilentinc.com/analogshield prototyping breadborad.

*The Analog Shield was developed as a collaboration between Texas Instruments® and the Kovacs / Giovangrandi lab at
Stanford University.

Copyright Digilent, Inc. All rights reserved. _
_ Other product and company names mentioned may be trademarks of their respective owners. Page 1of7

http://wiki.openmusiclabs.com/wiki/ArduinoFHT
http://store.arduino.cc/
http://www.adafruit.com/products/1651
http://www.digilentinc.com/analogshield

Analog Shield Application Note 2: FFT Spectrum Visualizer m

Also recommended is some sort of input. At least a headphone jack or plug (see the “Input” section). Eventually,
advanced users may want to build an anti-aliasing filter as well, although this is not necessary. It is discussed in a
separate section for the interested reader.

To build the microphone input circuit, you will need:

e 1xLM741 Op Amp (or equivalent)

e 1x Electret Microphone

e 1x1kQ Resistor

e 1x10k{) Resistor

e 1x200k() Resistor

e 1x100nF Capacitor

e Some solid core wire suited for breadboard use.

If you wish to use a line level input, you will also need a 3.5mm headphone jack.

Building the Demo

In order to build the Analog Shield FFT Visualizer, five nonstandard Arduino libraries are required. For a guide on
Arduino libraries and how to install them, go to http://arduino.cc/en/Guide/Libraries

The libraries required for the visualizer are:

e The Open Music Labs FHT library http://wiki.openmusiclabs.com/wiki/ArduinoFHT

e The Adafruit ILI9341 library (For the LCD) http://github.com/adafruit/Adafruit 119341

e The Adafruit GFX library (For the LCD) http://github.com/adafruit/Adafruit-GFX-Library

e The Adafruit STMPE®610 library (For Touch Functionality) http://github.com/adafruit/Adafruit STMPE610
e The Analog Shield library (for analog input) http://digilentinc.com/analogshield

e |n case these libraries move in the future, the Adafruit LCD libraries are linked from the Adafruit Touch
LCD Shield tutorial at http://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2

Once these libraries are downloaded and unzipped in the Arduino/libraries folder, be sure to re-open the Arduino
IDE as it will not recognize libraries added while the program is open. Once the libraries are ready, stack the LCD
and Analog Shield on the Arduino Uno. Next, open the “FFT_Visualizer” sketch with the Arduino IDE and upload it
to the Arduino UNO. Some data will appear on screen, although the visualizer does not yet have a signal. This data
represents the inherent noise in the Spectrum Visualizer and the environment.

Copyright Digilent, Inc. All rights reserved.
Otﬁer product and company names mentioned may be trademarks of their respective owners. Page 20f7

http://arduino.cc/en/Guide/Libraries
http://wiki.openmusiclabs.com/wiki/ArduinoFHT
http://github.com/adafruit/Adafruit_ILI9341
http://github.com/adafruit/Adafruit-GFX-Library
http://github.com/adafruit/Adafruit_STMPE610
http://digilentinc.com/anaglogshield
http://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2

Analog Shield Application Note 2: FFT Spectrum Visualizer M

Input

To actually use the visualizer, some signal input is needed. Input
from a signal generator is the obvious solution for an initial test, so
any sort of handy sine wave generator will work. Hook the sine
wave output between A0 and Ground and run. Be sure to not
exceed the safe voltage of the Analog Shield, +/-5V.

A function generator is not a very satisfying test. Many hobbyists
and students do not have convenient access to a good signal

generator, and almost everyone will eventually want to investigate

real world signals. Figure 3: Headphone jack input.

One option is to simply use line level (0-1.4V) audio as an

input source. A standard 3.5mm (1/8”) headphone jack R2 Output
soldered to breadboard wire can be connected to the ceve .1?".9. R +6V

headers of the Analog Shield. With this, the spectrum of

playing music can easily be observed. Figure 4 shows the U1 e T
Spectrum Visualizer with a headphone jack attached and / - I 6V
LCD removed. -

—J,u.g—.ooooooon

Going one step farther, one can connect a microphone to m
the Analog Shield. After all, watching th t R3 R4 Gnd
e Analog Shie er all, watching the spectrum move TR

around as a person sings a tune or whistles is fascinating.

fritzing
A fairly straightforward solution is to obtain an electret
microphone 2 and an amplifier. Figures 5 and 6 show an Figure 4: Microphone circuit layout.
example circuit using a commonly available electret
microphone and an inexpensive LM741 amplifier. For better performance, a higher performance amp, like an

LF356 amplifier can be used (U1 is the electret microphone).

R’SW\«
+6V 200k

+6V

Sok GND | 11

= 3> 5 ANALOG_SHIELD A0
Q.- R2 O
1 — e 2
Y 2) 1 A7 LM741P
GND
BV

Figure 5: Electret microphone circuit schematic.

Copyright Digilent, Inc. All rights reserved.
Otlrw)er product and company names mentioned may be trademarks of their respective owners. Page 30of7

Analog Shield Application Note 2: FFT Spectrum Visualizer M

Using the Analyzer

With a signal in the analyzer, it is worth discussing how to use the analyzer itself.

The main display shows the spectrum of the signal received, which is a plot of the tones of the received signal.
Increasing in frequency from left to right, the left most column reflects the power in the signal at 0 Hz (DC) and the
right most column the power in the signal at about 30 kHz. Each column reflects the power of a distinct frequency
bin (band).

Tapping the main display (where the spectrum is displayed) will toggle the grid on and off. The grid shows the
magnitude (strength) of a signal on the vertical axis and the frequency of the signal received on the horizontal axis.
Toggling the grid off will allow for faster screen updates (a smoother output).

Tapping the ‘span’ button changes how wide of a frequency range the system samples. There are several steps
from 1 kHz to 30 kHz. Switching to a smaller range means that individual frequency bins represent a smaller
frequency band, but a smaller total frequency range is measured.

Finally, tapping the ‘magnitude’ button will switch between a logarithmic display and a linear output. A logarithmic
output is generally more useful as it is more representative of how we perceive sounds, and makes small signals
more visible.

How the Code Works

The FFT Spectrum Visualizer follows a fairly straightforward program flow. With each iteration of the main loop, it
acquires an array containing 256 samples of 16-bit data from the Analog Shield at the specified sample rate. Once
the array has been acquired, it passes the data to the FHT function, which transforms the time domain samples of
a waveform in the array into a frequency spectrum. Finally, the resultant 16-bit spectrum is converted to an 8-bit

range (on a logarithmic or linear y-axis scale) so that it can be reasonably displayed on our 240 pixel tall LCD.

Once the spectrum is ready to display, the system spends a few tens of milliseconds updating the LCD, as well as
checking for touchscreen input and minor housekeeping. It then repeats the process. For slow sample rates (with a
frequency span close to 1 kHz) the screen update delay is a fairly small part of the overall display frame rate (a few
frames per second). At high sample rates, the screen refresh time is the dominant factor and the display output
appears to be continuous.

The section of code below is not meant to convey the entire code, but merely the program flow of the main loop.
The entire program has many helper functions and takes up several hundred lines, not including the invoked
libraries. The full code can be found at http://www.digilentinc.com/analogshield

void loop() {
while(1) { //not leaving the loop function reduces jitter
cli(Q; //stop all interrupts for acquisition.
if(span == 30) //fastest frequency range, no sample delay
{
for (int i =
fht_input[i]

i < FHT_N ; i++) { // save 256 samples
analog.signedRead(0); // put real data into bins

else //any other frequency span.

{

Copyright Digilent, Inc. All rights reserved.
Otﬁer product and company names mentioned may be trademarks of their respective owners. Page 40f7

http://www.digilentinc.com/analogshield

Analog Shield Application Note 2: FFT Spectrum Visualizer m

for (int i = 0 ; i < FHT_N ; i++) { // save 256 samples
fht_input[i] = analog.signedRead(0); // put real data into bins
delayMicroseconds(spanbDelay); //wait to lower sample rate

}
}

//now, the fourier functions!

fht_window(); // window the data for better frequency response
fht_reorder(); // reorder the data before doing the fht
fht_run(); // process the data in the fht

if(linLog) //decide if output is going to be linear or logarithmic.
fht_mag _1in8(); // take the output of the fht
}
else
fht_mag log(); // take the output of the ftht
sei(); //start interrupts back up and build our display
SP1.setDataMode(SP1_MODEQ); //correct SPI Mode for the LCD
if(linLog) //draw the display in the right mode
) drawBins(fht_lin_out8); //draw the screen.

else

drawBins(fht_log_out); //draw the screen.
}

SP1.setDataMode(SP1_MODE3); // correct SPI mode for analog.read();

Anti-Aliasing Filter
To improve the analyzer, an anti-aliasing filter can be added.

The process of sampling a digital signal into the analog domain causes
frequencies too high to be accurately captured by the Analog-to-
Digital conversion to falsely reappear as lower frequencies in the
digitized signal Bl Signals seem to wrap around, or ‘bounce off’, the
top of the spectrum plot.

The FFT spectrum visualizer can actually provide a fantastic
demonstration of aliasing and the need for an anti-aliasing filter. If

the FFT Visualizer is set to a 1 kHz span and given an input sine wave

Figure 6: Anti-aliasing filter.

at 500 Hz (for example, using a headphone jack and an online tone
generator), there will be a sharp peak in the middle of the spectrum. If the input frequency is increased to 800 Hz,
the peak will move to the right. Above 1 kHz (1000 Hz) the peak will begin to move ‘backwards’ (to the left), even
as the frequency continues to increase. At 1.5 kHz, the peak will once again be in the center of the spectrum. At 2
kHz, the peak reaches the left hand side and then starts moving rightward again! By 2.5 kHz it will once again

Copyright Digilent, Inc. All rights reserved.
Otlrw)er product and company names mentioned may be trademarks of their respective owners. Page 50f7

Analog Shield Application Note 2: FFT Spectrum Visualizer M

return to the middle of the display, appearing for all intents and purposes identical to the 500 Hz signal! Clearly,
this is a problem.

The solution to this is an analog ‘low-pass’ filter between the input signal and the input to the Analog Shield. A low-
pass filter is used to remove the higher frequencies before they are digitized, passing only the frequencies of
interest.

In an ideal world, this filter would act like a brick wall; perfectly passing frequencies up to the highest one that the
Visualizer can capture and perfectly eliminating all others. Unfortunately, such filters can’t be made in the real
world, as making a sharper edge requires a more complicated filter. A truly perfect cutoff would require an
infinitely large filter.

For the 30 kHz sample mode, an example anti-aliasing filter design with a cutoff at 24 kHz and a stop band at 40
kHz has been shared with this document, as displayed in Fig. 7. This filter is not perfect, as signals between 24 kHz
and the highest frequency bin (around 30 kHz) would appear weaker than they actually are. Furthermore, signals
between 30 kHz and 40 kHz will still appear, as if they are actually signals below 30 kHz, but these tradeoffs have to
be made. Ideally, one would simply not show the bins between 24 and 30 kHz, but given the flexible nature of this
project and the fact that it is already limited to 30 kHz, those bins have been kept.

It stands to reason that if the FFT Visualizer is set to 1 kHz mode, a filter with a cutoff near 1 kHz should be chosen,
offering similar behaviors to the 30 kHz filter but at lower frequencies. Such a design hasn’t been included here,
but TI Webench® (www.ti.com/webench) or many other free filter design tools can easily design such a filter.

For any active filter, the signal from outside should go into the input of the filter; output from the filter should be
connected to the input (AO) of the Analog Shield. Power can be drawn from the Analog Shield’s onboard adjustable

supply.

Notes

[1] Cypress semiconductor has a whitepaper explaining the differences between the FFT and FHT, it can be found
at http://www.cypress.com/?doclD=43614.

[2] An electret microphone is a simple microphone that is fairly easy to wire up. See the Wikipedia article at
http://en.wikipedia.org/wiki/Electret _microphone. Sparkfun sells a standard electret

https://www.sparkfun.com/products/8635, although it is identical to one you can get at Radio Shack®, or any

commodity electronic components store.

[3] Maxim Integrated® has put together a clear article describing the need for and benefit of an anti-aliasing filter,
which can be found at http://www.maximintegrated.com/app-notes/index.mvp/id/928.

Disclaimer: This code and circuit was developed by William Esposito, Ph.D. Candidate in Electrical Engineering,
Stanford University, in the Kovacs/Giovangrandi Laboratory in collaboration with Texas Instruments, Incorporated.
All code herein is free and open source, but is provided as-is with no warranties implied or provided. Use of this
code and the associated documentation is at the user’s own risk.

Copyright Digilent, Inc. All rights reserved.
Otﬁer product and company names mentioned may be trademarks of their respective owners. Page 6of7

http://www.ti.com/webench
http://www.cypress.com/?docID=43614
http://en.wikipedia.org/wiki/Electret_microphone
https://www.sparkfun.com/products/8635
http://www.maximintegrated.com/app-notes/index.mvp/id/928

Analog Shield Application Note 2: FFT Spectrum Visualizer

lm BEYOND THEORY

C
FFT Visualizer Anti-Aliasing Filter 3 g & _Gf
Fouteff = 24kHz II II
SR GND g Stage? anp
"
Signal Input - g o
: T
60k A A + 5'\
;
1.8k 6.8k 6
LM CEB0CNA LMCes0CNE
Yee = Analog Shield +vadj
Y35 = Analog Shield -Vad)
£ 5
8“ B 8“ =
$tage 3 anp Stage 4
GND
n
n

LMCBEICNC

80ﬁyright Digilent, Inc. All rights reserved.
t

7
Ra Rg
AAAA AAMA 12'\
LA LA bR - T 14

180 1]

Figure 7. LPF with 24 kHz Cutoff.

er product and company names mentioned may be trademarks of their respective owners.

Output toAnalog Shield A0

LMCEE0CND

Page 7 of 7

	Overview
	Hardware
	Building the Demo
	Input
	Using the Analyzer
	How the Code Works
	Anti-Aliasing Filter
	Notes

