

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.digilentinc.com

Analog Shield Application Note 4: Lissajous Diagrams

Revised June 5, 2014
Author: William J. Esposito, Doctoral Candidate and Gregory T.A. Kovacs, Professor of Electrical
Engineering, Stanford University

This document was edited and adapted for MPIDE by Digilent. The original document was prepared by
William J. Esposito and Gregory T.A. Kovacs at Stanford University.

Overview
 Using concepts from trigonometry, a circle can be
created from a sine and a cosine function. More
complex shapes can be made by varying phases and
frequencies.

With the Analog Shield DAC, two waves are output to
the x- and y- axis inputs of an oscilloscope. One is set
at a fixed frequency and the second varies over time.

The ratio of the frequencies on the x- and y- axes
determines shape of the waveform displayed on the
screen. If the frequencies are equal, a single loop is
displayed. At a ratio of 2:1, a figure eight shape with
two lobes appears. At 3:1, three lobes appear, and so
on.

Hardware
The Lissajous Pattern Generator is built around the
Arduino™ and the Analog Shield*

The Arduino UNO™ R3 can be found at:
http://store.arduino.cc/

The Analog Shield can be found at:
http://www.digilentinc.com/analogshield

The demo also requires a two-channel oscilloscope with
x-y mode for output.

Figure 1. Prototype Analog Shield with Lissajous pattern generator with an
oscilloscope.

Figure 2. Prototype Analog Shield, with breadboard not attached.

 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 3

http://store.arduino.cc/
http://www.digilentinc.com/analogshield

Analog Shield Application Note 4: Lissajous Diagrams

Building the Demo
In order to build Lissajous demo, two nonstandard Arduino libraries are necessary. For a guide on Arduino libraries
and how to install them, go to http://arduino.cc/en/Guide/Libraries.

The libraries required for the demo are:

• The TimerOne library (for the DDS sample clock) https://code.google.com/p/arduino-timerone/
• The Analog Shield library (for analog input) http://digilentinc.com/analogshield

Once these libraries are downloaded and unzipped in four Arduino/libraries folder, be sure to re-open the Arduino
IDE as it will not recognize libraries added while it is open. Once that is done, attach the Analog Shield to the
Arduino Uno. Next, open the “Lissajous_curve” sketch with the Arduino IDE and upload it to the Arduino Uno.

Connecting the Output
Next, connect the channel one input of an oscilloscope between D0 and Ground on the Analog Shield. Connect the
channel two input of the oscilloscope between D1 and Ground. Switch the oscilloscope to X-Y input mode and the
image on the scope should appear to shift and swirl in patterns similar to Fig. 1. Switching the oscilloscope to
standard time mode will show two sine waves (one on each respective channel), one at a fixed frequency and one
varying in frequency over time.

How the Code Works
The Lissajous curve generator is based on DDS code outlined at in the DDS tutorial at
http://www.digilentinc.com/analogshield. It uses a recorded single period of a sine wave stored in a table to
generate an output waveform. It can adjust the output frequency via software by controlling the rate at which the
program steps through the table. By outputting two sine waves simultaneously (one of them phase shifted by 90°
to generate a cosine), a Lissajous curve is produced.

The code for the Lissajous curve generator is attached here, and can be found at

http://www.digilentinc.com/analogshield

/* Lissajous Curve */

//12 bit long sine table
PROGMEM prog_uint16_t isinTable16[] = { <sine table omitted for space> };

#include <analogShield.h>
#include <avr/pgmspace.h>
#include <TimerOne.h>

unsigned long frequencyIncrement = 40000; //32 bits
unsigned long frequencyIncrement2 = 40000; //32 bits
unsigned long phaseAccumulator = 0; //32 bits
unsigned long phaseAccumulator2 = 0; //32 bits

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 3

http://arduino.cc/en/Guide/Libraries
https://code.google.com/p/arduino-timerone/
http://digilentinc.com/anaglogshield
http://www.digilentinc.com/analogshield
http://www.digilentinc.com/analogshield

Analog Shield Application Note 4: Lissajous Diagrams

void setup(){
 Timer1.initialize(30); //100000
 Timer1.attachInterrupt(circle);
}

void loop(){ //Sweeps frequency
 frequencyIncrement2 = 20000;
 while(frequencyIncrement2 < 40000)
 {
 frequencyIncrement2 += 50;
 delay(50);
 }
 delay(10000);

}

void circle() //this is it.
{
 //increment the phase accumulator
 phaseAccumulator += frequencyIncrement;
 phaseAccumulator2 += frequencyIncrement2;

 //peel off top bits ch 1
 unsigned long tempPhase = (phaseAccumulator >> 12);
 unsigned int tablePosition = tempPhase & 0x0FFF;
 tablePosition = tablePosition & 0x0FFF;
 //peel off top bits ch 2
 unsigned long tempPhase2 = (phaseAccumulator2 >> 12);
 unsigned int tablePosition2 = tempPhase2 & 0x0FFF;
 tablePosition2 = (tablePosition2 + 1024) & 0x0FFF;

 //look up and output sine wave values
 unsigned int value = 0;
 unsigned int value2 = 0;
 value = pgm_read_word(isinTable16 + tablePosition);
 value2 = pgm_read_word(isinTable16 + tablePosition2);
 analog.write(value,value2, true);
}

Potential Improvements
The Lissajous curve generator could be used as a music visualizer by controlling the frequency variable with input
from and Analog Shield ADC configured as a beat detector. It could also be used as a back end for a game where
the user controls one of the frequencies with a potentiometer and the other is controlled via software, challenging
the user to follow the frequency changes made by the software and maintain a circular output.

Disclaimer: This code and circuit was developed by William Esposito, Ph.D. Candidate in Electrical Engineering, Stanford
University, in the Kovacs/Giovangrandi Laboratory in collaboration with Texas Instruments, Incorporated. All code herein is free
and open source, but is provided as-is with no warranties implied or provided. Use of this code and the associated documentation
is at the user’s own risk.

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 3

	Overview
	Hardware
	Building the Demo
	Connecting the Output
	How the Code Works
	Potential Improvements

