## DATA SHEET SM700 RF Engines (R)Model Number: SM700 Part Number: SM700PC1

Document Revision v1.0



Wonitor Any this Monitor Anything from Anywhere™

> © 2011 Synapse, All Rights Reserved All Synapse products are patented or patent pending Specifications are subject to change without notice - confirm that data is current Synapse, the Synapse logo, SNAP, and Portal are all registered trademarks of Synapse Wireless, Inc. 500 Discovery Drive Huntsville, Alabama 35806 877-982-7888

> > Doc # 430136-01B

# This Page Intentionally Blank

### **Table of Contents**

#### Be sure to read the ERRATA which follow this page.

| 1.0 | SM7  | 00PC1 Module Overview            | 5  |
|-----|------|----------------------------------|----|
|     | 1.1  | Specifications                   | 6  |
|     | 1.2  | Module Pin Definitions           | 7  |
|     | 1.3  | Electrical Characteristics       | 8  |
|     | 1.4  | Mechanical Drawings              | 9  |
|     | 1.5  | Board Mounting Configurations    | 11 |
|     |      | 1.5.1 Processing                 | 11 |
|     |      | 1.5.2 Pb-Free Soldering Paste    | 11 |
|     |      | 1.5.3 Cleaning                   | 11 |
|     |      | 1.5.4 Optical Inspection         | 12 |
|     |      | 1.5.5 Repeating Reflow Soldering | 12 |
|     |      | 1.5.6 Wave Soldering             | 12 |
|     |      | 1.5.7 Hand Soldering             | 12 |
|     |      | 1.5.8 Rework                     | 12 |
|     |      | 1.5.9 Additional Grounding       | 12 |
| 2.0 | Ager | ncy Certifications               | 13 |
|     | 2.1  | United States (FCC)              | 13 |
|     |      | 2.1.1 OEM Labeling Requirements  | 13 |
|     |      | 2.1.2 FCC Notices                | 13 |
|     |      | 2.1.3 FCC Approved Antennas      | 14 |
|     | 2.2  | Canada (IC)                      | 14 |
|     |      | 2.2.1 OEM Labeling Requirements  | 15 |

# Errata

Be sure you are using SNAP 2.4.21, which is the official release for the MC1322X chip and the Model SM700 module. All of the following errata can be found in the <u>SNAP Reference Manual</u>; be sure to read the sections on the MC1322x chip and the SM700 module.

#### 1) Wakeup pins

Four pins, GPIO\_26 through GPIO\_29, can be configured to wake the module from sleep. Note that these pins automatically become inputs when entering sleep. Four other pins, GPIO\_22 through GPIO\_25 automatically become outputs when entering sleep (this behavior is not under software control).

#### 2) Network IDs

The MC13224 hardware does not function properly with all network IDs. An MC13224 node set to a network ID that fits the pattern 0xn2nn or 0xnAnn will not be able to receive radio transmissions, though it can still send them. This is an issue with the underlying Freescale radio.

#### For example:

Network ID 0xFADE does not work. Network ID 0xFBDE does work.

#### 3) Built-in functions – setPinPullup()

The setPinPullup() function does not apply a pull-up to GPIO\_30 through GPIO\_41. No internal pull-ups are available on these pins.

#### 4) Built-in functions - sleep()

There are four sleep() modes on the MC13224 module. Even-numbered sleep modes do not require that an external 32 kHz crystal be connected and are less accurate with their timing. (The internal clock can be regulated on a node-by-node basis, if necessary, using NV Parameter 65.) Odd-numbered sleep modes provide very accurate timing but require the presence of the external crystal.

| Sleep Mode | Details                                                                              |
|------------|--------------------------------------------------------------------------------------|
| 0, 1       | Fast recovery                                                                        |
|            | <ul> <li>GPIO states are maintained during sleep<sup>†</sup></li> </ul>              |
|            | Highest current usage                                                                |
| 2, 3       | Fast recovery                                                                        |
|            | <ul> <li>GPIO states are NOT maintained (though they are reset on waking)</li> </ul> |

<sup>†</sup> Pins GPIO\_22, GPIO\_23, GPIO\_24, and GPIO\_25 will always shift to being outputs while the node is sleeping in all sleep modes. Pins GPIO\_26, GPIO\_27, GPIO\_28, and GPIO\_29 will always shift to being inputs while the node is sleeping in all sleep modes.

### 1.0 SM 700 RF Engines Overview

Synapse raises the bar on integrated performance with its SM700 RF Engine® based on the Freescale<sup>™</sup> MC13224V transceiver platform. This wireless network module uses an ARM7 32-bit processor with large on-chip memory and integrated 12-bit ADCs.

And like all RF Engines from Synapse, the Model SM700 comes with SNAP<sup>®</sup> already loaded and ready to perform right out of the box. SNAP is Synapse's award-winning, mesh network operating system that provides wireless connectivity for Internet-to-machine and machine-to-machine communications.

With 96K RAM of memory, large applications can bring intelligence to the very edge of the network for local operations. These applications can be uploaded over-the-air... even mesh hopping across the network to reach its destination. And because of the large memory in the SM700, the core SNAP operating system can also be upgraded over-the-air and leaves your network in place and intact.



Very little board space is needed for this RF Engine (25mm x 36mm). Even the antenna is integrated to further reduce system size and cost. What

comes in a small package however is big on capabilities. The SM700 can achieve a range of over 1.5 miles and deliver an output of up to +20dBm. For applications requiring battery power, the Model SM700 can perform at power consumption levels as low as  $12 \ \mu$ A.

#### This Data Sheet details the SM700PC1 module, which includes:

- Powerful 32-bit TDMI ARM7 microprocessor
- 2.4 GHz RF Frequency (2400 2483.5 MHz)
- Up to 100mW output power
- 16 RF Channels
- Small footprint: 1" x 1.4" (25.4mm x 36.5mm)
- Operating temperature: -40°C to +85°C
- Over 1.5 miles range
- AES 128-bit encryption
- FCC, CE and IC certified
- Accurate 12-bit ADC for precision sensors

- Large on-board memory resources
- -96 dBm Rx sensitivity
- +20dBm Tx output power
- 2.0 to 3.6 Volts Vcc
- Low power consumption:
  - Transmit mode.....193mA
  - Receive mode......30mA
  - Sleep mode.....12/53µA
- Integrated F-antenna
- Small surface-mount IC footprint



Figure 1.0 Block diagram showing the major subsystems comprising the SM700PC1

### 1.1 Specifications

| Table 1.0. SM700PC1 Specifications |                                 |                             |  |  |
|------------------------------------|---------------------------------|-----------------------------|--|--|
|                                    | Outdoor LOS Range               | 1.5 miles                   |  |  |
| Borformonoo                        | Transmit Power Output           | 20 dBm                      |  |  |
| renormance                         | RF Data Rate                    | 250Kbps                     |  |  |
|                                    | Receiver Sensitivity            | -94 dBm (1% PER)            |  |  |
|                                    | Supply Voltage                  | 2.0 - 3.6 V                 |  |  |
| Power Pequirements                 | Transmit Current (Typ@3.3V)     | 193mA                       |  |  |
| Fower Requirements                 | Idle/Receive Current (Typ@3.3V) | 30mA                        |  |  |
|                                    | Sleep Current (Typ@3.3V)        | 12uA / 53uA                 |  |  |
|                                    | Frequency                       | ISM 2.4GHz                  |  |  |
|                                    | Spreading Method                | FHSS                        |  |  |
| Gonoral                            | Modulation                      | GFSK                        |  |  |
| General                            | Dimensions                      | 1" x 1.4" (25.4mm x 36.5mm) |  |  |
|                                    | Operating Temperature           | - 40 to 85 deg C.           |  |  |
|                                    | Antenna Options                 | Integrated F-antenna        |  |  |
|                                    | Topology                        | SNAP                        |  |  |
| Networking                         | Error Handling                  | Retries and acknowledgement |  |  |
|                                    | Number of Channels              | 16                          |  |  |
| Available I/O                      | UARTS with HW Flow Control      | 2                           |  |  |
|                                    | GPIO                            | 46 total; 12bit ADC         |  |  |
|                                    | FCC Part 15.247                 | FCC ID: U9O-SM700           |  |  |
| Agency Approvals                   | Industry Canada (IC)            | IC: 7084A-SM700             |  |  |
|                                    | European Union (EU) Directive   | CE                          |  |  |

## **1.2 Module Pin Definitions**

| Tab  | Table 1.1. SM700PC1 Module Pin Assignments |                                |                                                                                    |  |  |  |
|------|--------------------------------------------|--------------------------------|------------------------------------------------------------------------------------|--|--|--|
| Pin# | Name                                       | Туре                           | Description                                                                        |  |  |  |
| 1    | GND                                        | GND                            | GND                                                                                |  |  |  |
| 2    | GND                                        | GND                            | GND                                                                                |  |  |  |
| 3    | GND                                        | GND                            | GND                                                                                |  |  |  |
| 4    | ADC2_VREFL                                 | Analog Input or Digital<br>I/O | GPIO39 Alternate function: Low reference voltage for ADC2                          |  |  |  |
| 5    | ADC1_VREFL                                 | Analog Input or Digital        | GPIO41 Alternate function: Low reference voltage for ADC1                          |  |  |  |
| 6    | ADC1_VREFH                                 | Analog Input or Digital<br>I/O | GPIO40 Alternate function: High reference voltage for ADC1                         |  |  |  |
| 7    | ADC2_VREFH                                 | Analog Input or Digital<br>I/O | GPIO38 Alternate function: Low reference voltage for ADC2                          |  |  |  |
| 8    | ADC0                                       | Analog Input or Digital<br>I/O | GPIO30 Alternate function: ADC analog input Channel 0                              |  |  |  |
| 9    | ADC1                                       | Analog Input or Digital<br>I/O | GPIO31 Alternate function: ADC analog input Channel 1                              |  |  |  |
| 10   | ADC2                                       | Analog Input or Digital<br>I/O | GPIO32 Alternate function: ADC analog input Channel 2                              |  |  |  |
| 11   | ADC3                                       | Analog Input or Digital<br>I/O | GPIO33 Alternate function: ADC analog input Channel 3                              |  |  |  |
| 12   | VCC                                        | Power Input                    | High side supply voltage to buck regulator switching MOSFET & IO buffers           |  |  |  |
| 13   | ADC4                                       | Analog Input or Digital<br>I/O | GPIO34 Alternate function: ADC analog input Channel 4                              |  |  |  |
| 14   | ADC5                                       | Analog Input or Digital<br>I/O | GPIO35 Alternate function: ADC analog input Channel 5                              |  |  |  |
| 15   | ADC6                                       | Analog Input or Digital<br>I/O | GPIO36 Alternate function: ADC analog input Channel 6                              |  |  |  |
| 16   | ADC7_RTCK                                  | Analog Input or Digital<br>I/O | GPIO37 Alternate function: ADC analog input Channel 7 /<br>Return Clock            |  |  |  |
| 17   | TDO                                        | Digital I/O                    | GPIO49 Alternate function: JTAG Test Data Output                                   |  |  |  |
| 18   | TDI                                        | Digital I/O                    | GPIO48 Alternate function: JTAG Test Data Input                                    |  |  |  |
| 19   | ТСК                                        | Digital I/O                    | GPIO47 Alternate function: JTAG Test Clock Input                                   |  |  |  |
| 20   | TMS                                        | Digital I/O                    | GPIO46 Alternate function: JTAG Test Mode Select Input                             |  |  |  |
| 21   | UART2_RTS                                  | Digital I/O                    | GPIO21 Alternate function: UART2 Request to Send input                             |  |  |  |
| 22   | GND                                        | GND                            | GND                                                                                |  |  |  |
| 23   | UARI2_CIS                                  | Digital I/O                    | GPIO20 Alternate function: UAR12 Clear to Send output                              |  |  |  |
| 24   | UARI2_RX                                   | Digital I/O                    | GPI019 Alternate function: UAR12 RX data input                                     |  |  |  |
| 25   | UARI2_IX                                   | Digital I/O                    | GPI018 Alternate function: GPI018UAR12 TX data output                              |  |  |  |
| 26   | UARI1_RIS                                  | Digital I/O                    | GPI017 Alternate function: UART1 Request to Send input                             |  |  |  |
| 27   | UARI1_CIS                                  | Digital I/O                    | GPI016 Alternate function: UART1 Clear to Send output                              |  |  |  |
| 28   | I2C_SDA                                    | Digital I/O                    | GPI013 Alternate function: I2C Bus data                                            |  |  |  |
| 29   | 12C_SCL                                    | Digital I/O                    | GPI012 Alternate function: I2C Bus clock                                           |  |  |  |
| 30   | TMR3                                       | Digital I/O                    | GPIO11 Alternate function: Timer 3 IO signal                                       |  |  |  |
| 31   | VCC                                        | Power Input                    | High side supply voltage to buck regulator switching MOSFET           & IO buffers |  |  |  |
| 32   | TMR2                                       | Digital I/O                    | GPIO10 Alternate function: Timer 2 IO signal                                       |  |  |  |
| 33   | TMR1                                       | Digital I/O                    | GPIO9 Alternate function: Timer 1 IO signal                                        |  |  |  |
| 34   | TMR0                                       | Digital I/O                    | GPIO8 Alternate function: Timer 0 IO signal                                        |  |  |  |
| 35   | SPI_SCK                                    | Digital I/O                    | GPIO7 Alternate function: SPI Port clock                                           |  |  |  |
| 36   | UART1_TX                                   | Digital I/O                    | GPIO14 Alternate function: UART1 TX data output                                    |  |  |  |
| 37   | UART1_RX                                   | Digital I/O                    | GPIO15 Alternate function: UART1 RX data input                                     |  |  |  |
| 38   | GND                                        | GND                            | GND                                                                                |  |  |  |
| 39   | SPI_MOSI                                   | Digital I/O                    | GPIO6 Alternate function: SPI Port MOSI                                            |  |  |  |
| 40   | SPI_MISO                                   | Digital I/O                    | GPIO5 Alternate function: SPI Port MISO                                            |  |  |  |

| Pin# | Name       | Туре                     | Description                                                  |
|------|------------|--------------------------|--------------------------------------------------------------|
| 41   | SPI_SS     | Digital I/O              | GPIO4 Alternate function: SPI Port SS                        |
| 42   | SSI_BITCK  | Digital I/O              | GPIO3 Alternate function: SSI Bit Clock                      |
| 43   | SSI_FSYN   | Digital I/O              | GPIO2 Alternate function: SSI Frame Sync                     |
| 44   | SSI_RX     | Digital I/O              | GPIO1 Alternate function: SSI RX data input                  |
| 45   | SSI_TX     | Digital I/O              | SSI TX data output / GPIO0                                   |
| 46   | KBI_7      | Digital I/O              | GPIO29 Alternate function: Keyboard Interface Bit 7          |
| 47   | COIL_BK    | Power Switch Output      | Buck Converter coil drive output                             |
| 48   | KBI_6      | Digital I/O              | GPIO28 Alternate function: Keyboard Interface Bit 6          |
| 49   | RESETB     | Digital Input            | System reset input                                           |
| 50   | LREG_BK_FB | G_BK_FB Power Input      | Voltage input to onboard regulators, buck regulator feedback |
| 50   |            |                          | voltage                                                      |
| 51   | GND        | GND                      | GND                                                          |
| 52   | KBI_5      | Digital I/O              | GPIO27 Alternate function: Keyboard Interface Bit 5          |
| 53   | KBI_4      | Digital I/O              | GPIO26 Alternate function: Keyboard Interface Bit 4          |
| 54   | KBI_3      | Digital I/O              | GPIO25 Alternate function: Keyboard Interface Bit 3          |
| 55   | KBI_2      | Digital I/O              | GPIO24 Alternate function: Keyboard Interface Bit 2          |
| 56   | KBI_1      | Digital I/O              | GPIO23 Alternate function: Keyboard Interface Bit 1          |
| 57   | KBI_0_HST  | I_0_HST<br>K Digital I/O | GPIO22 Alternate function: Keyboard Interface Bit 0 / Host   |
| 57   | _WK        |                          | Walk-up output                                               |
| 58   | GND        | GND                      | GND                                                          |
| 59   | GND        | GND                      | GND                                                          |
| 60   | GND        | GND                      | GND                                                          |

## **1.3 Electrical Characteristics**

| Table 1.2. Absolute Maximum Ratings |      |           |      |  |
|-------------------------------------|------|-----------|------|--|
| Description                         | Min  | Max       | Unit |  |
| Power Supply Voltage                | -0.3 | 3.6       | VDC  |  |
| Voltage on Any Digital Pin          | -0.3 | VCC + 0.2 | VDC  |  |
| RF Input Power                      |      | 10        | dBm  |  |
| Storage Temperature Range           | -45  | 125       | °C   |  |
| Reflow Soldering Temperature        |      | 260       | °C   |  |

Note: Exceeding the maximum ratings may cause permanent damage to the module.

| Table 1.3. Recommended Operating Conditions |     |     |     |      |
|---------------------------------------------|-----|-----|-----|------|
| Description                                 | Min | Тур | Max | Unit |
| Power Supply Voltage (VCC)                  | 2.1 |     | 3.6 | VDC  |
| Ambient Temperature Range                   | -40 | 25  | 85  | °C   |
| Crystal Reference Oscillator                |     | 24  |     | MHz  |

| Table 1.4. DC Characteristics (@ 25 °C, VCC = 3.3V unless otherwise noted) |     |     |      |
|----------------------------------------------------------------------------|-----|-----|------|
| Description                                                                | Min | Max | Unit |
| Transmit Mode Current (at +20 dBm Output Power)                            | 193 |     | mA   |
| Receive Mode Current                                                       | 30  |     | mA   |
| Sleep Mode Current                                                         | 12  | 53  | uA   |

### 1.4 Mechanical Drawings



Figure 1.1 Mechanical drawings of the SM700PC1 Module



Figure 1.2 Module Land Footprint for the SM700PC1 Module

### **1.5 Board Mounting Considerations**

### 1.5.1 Processing

| Table 1.5 Recommended Reflow Profile  |             |  |
|---------------------------------------|-------------|--|
| Parameter                             | Value       |  |
| Ramp up rate (from Tsoakmax to Tpeak) | 3º/sec max  |  |
| Minimum Soak Temperature              | 150°C       |  |
| Maximum Soak Temperature              | 200°C       |  |
| Soak Time                             | 60-120 sec  |  |
| TLiquidus                             | 217°C       |  |
| Time above TL                         | 60-150 sec  |  |
| Tpeak                                 | 250°C       |  |
| Time within 5º of Tpeak               | 20-30 sec   |  |
| Time from 25° to Tpeak                | 8 min max   |  |
| Ramp down rate                        | 6°C/sec max |  |

Achieve the brightest possible solder fillets with a good shape and low contact angle.

#### 1.5.2 Pb-Free Soldering Paste

Use of "No Clean" soldering paste is strongly recommended, as it does not require cleaning after the soldering process.

**Notice:** The quality of solder joints on the castellations ('half vias') where they contact the host board should meet the appropriate IPC Specification. See IPC-A-610: Acceptability of Electronic Assemblies, section 8.2.4 Castellated Terminations.

#### 1.5.3 Cleaning

In general, cleaning the populated modules is strongly discouraged. Residuals under the module cannot be easily removed with any cleaning process.

- Cleaning with water can lead to capillary effects where water is absorbed into the gap between the host board and the module. The combination of soldering flux residuals and encapsulated water could lead to short circuits between neighboring pads. Water could also damage any stickers or labels.
- Cleaning with alcohol or a similar organic solvent will likely flood soldering flux residuals into the two housings, which is not accessible for post-washing inspection. The solvent could also damage any stickers or labels.
- Ultrasonic cleaning could damage the module permanently.

The best approach is to consider using a "no clean" soldering paste and eliminate the post-soldering cleaning step.

## 1.5.4 Optical Inspection

After soldering the Module to the host board, consider optical inspection to check the following:

- Proper alignment and centering of the module over the pads.
- Proper solder joints on all pads.
- Excessive solder or contacts to neighboring pads, or vias.

### 1.5.5 Repeating Reflow Soldering

Only a single reflow soldering process is encouraged for host boards.

#### 1.5.6 Wave Soldering

If a wave soldering process is required on the host boards due to the presence of leaded components, only a single wave soldering process is encouraged.

#### 1.5.7 Hand Soldering

Hand soldering is possible. Use a soldering iron temperature setting equivalent to 350°C, follow IPC recommendations/ reference document IPC-7711.

#### 1.5.8 Rework

The Model SM700 Module can be unsoldered from the host board. Use of a hot air rework tool and hot plate for pre-heating from underneath is recommended. Avoid overheating.

**Warning:** Never attempt a rework on the module itself (e.g. replacing individual components). Such actions will terminate warranty coverage.

## **1.5.9 Additional Grounding**

Attempts to improve module or system grounding by soldering braids, wires, or cables onto the module RF shield cover is done at the customers own risk. The numerous ground pins at the module perimeter should be sufficient for optimum immunity to external RF interference.

#### 2.0 Agency Certifications

### 2.1 United States (FCC)

The Model SM700 modules comply with Part 15 of the FCC rules and regulations. Compliance with the labeling requirements, FCC notices and antenna usage guidelines are required. In order to comply with FCC Certification requirements, the Original Equipment Manufacturer (OEM) must fulfill the following requirements.

- 1. The system integrator must place an exterior label on the outside of the final product housing the SM700 Modules. Figure 2.1 below shows the contents that must be included in this label.
- 2. SM700 Modules may only be used with the antenna that has been tested and approved for use with the module.

#### 2.1.1 OEM Labeling Requirements

**NOTICE:** The OEM must make sure that FCC labeling requirements are met. This includes a clearly visible exterior label on the outside of the final product housing that displays the contents shown in Figure 2.1 below.

MANUFACTURERS NAME BRAND NAME or TRADE NAME Figure 2.1 FCC Label

Contains SM700 FCC ID: U9O-SM700

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interferences, and (2) this device must accept any interference received, including interference that may cause undesired operation.

#### 2.1.2 FCC Notices

**WARNING:** The SM700 modules have been tested by the FCC for use with other products without further certification (as per FCC Section 2.1091). Changes or modifications to this device not expressly approved by Synapse Wireless Inc. could void the user's authority to operate the equipment.

**NOTICE:** OEM's must certify final end product to comply with unintentional radiators (FCC Section 15.107 and 15.109) before declaring compliance of their final product to Part 15 of the FCC Rules.

**NOTICE:** The SM700 modules have been certified for remote and base radio applications. If the module will be used for portable applications, the device must undergo SAR testing.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

#### 2.1.3 FCC Approved Antennas

The SM700 modules are FCC-approved for fixed base station and mobile applications.

**RF Exposure WARNING:** This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

**NOTICE:** The preceding statement must be included as a CAUTION statement in OEM product manuals in order to alert users of FCC RF Exposure compliance.

## 2.2 Canada (IC)

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

#### 2.2.1 OEM Labeling Requirements

The "CE" mark must be placed on the OEM product in a visible location. The CE mark will consist of the Initials "CE" with the following form:

If the CE marking is reduced or enlarged, the proportions given in the following drawing must be adhered too.

The CE mark must be a minimum of 5mm in height.

The CE marking must be affixed visibly, legibly and indelibly.  $( \in \mathbb{O})$ 

Since the 2400-2483.5 MHz band is not harmonized by a few countries throughout Europe, the Restriction sign must be placed to the right of the CE marking as shown in the drawing.

Labeling requirements for Industry Canada are similar to those of the FCC. A clearly visible label on the outside of the final product housing must display the contents shown in Figure 2.2 below.

MANUFACTURERS NAME **BRAND NAME or TRADE NAME** MODEL: Contains RF Engine IC: 7084A-SM700

Figure 2.2 IC Label

CE

**NOTE:** The OEM can choose to implement a single label combined for both FCC and IC labeling requirements. If a combined single label is chosen, there must be a clearly visible label on the outside of the final product housing displaying the contents shown in Figure 2.3 below.

MANUFACTURERS NAME BRAND NAME or TRADE NAME Figure 2.3 Combined FCC and IC Label

Contains RF Engine FCC ID: U9O-SM700 Contains RF Engine IC: 7084A-SM700

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interferences, and (2) this device must accept any interference received, including interference that may cause undesired operation.

**NOTE:** The OEM can choose to implement a single label combined for FCC, CE and IC labeling requirements. If a combined single label is chosen, there must be a clearly visible label on the outside of the final product housing displaying the contents shown in Figure 2.4 below.

| MANUFACTURERS NAME       | Figure 2.4 Combined FCC, CE and IC Label |
|--------------------------|------------------------------------------|
| BRAND NAME OF TRADE NAME |                                          |
|                          |                                          |

Contains RF Engine FCC ID: U9O-SM700 Contains RF Engine IC: 7084A-SM700

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interferences, and (2) this device must accept any interference received, including interference that may cause undesired operation.