
AN043 - Methods for using thumbwheel switches as numeric
input devices.

Submitted by:

Glenn Clark
Protean Logic Inc.

In this application note common “thumbwheel” switches are used as input devices for the TICkit processor. Thumbwheel
switches, or BCD switches are actually four SPST switches that are mechanically connected to generate a binary code
that matches the mechanically selected digit. This approach offers the advantage of confirming a users selection without
having some system to output numeric data. For user applications where there is no other requirement for output,
thumbwheel switches are a logic choice for reliable numeric input. “Thumbwheel” switches come in a variety of
packages. Some have up and down buttons to select different values, others have little handles on the wheel, still others
have values that are selected with a screwdriver or small knob. The latter variety are used for setup values which do not
change frequently.

The figure below shows a typical BCD thumbwheel
switch connected to a TICkit processor. Obviously,
many TICkit connections are not shown in this diagram.
The common element of the single digit switch is
connected to ground, while the four switched legs are
connected to four ‘D’ port pins are pulled high. As
different values are selected on the switch, the binary
code for that value appears at the four ‘D’ pins. One
thing to notice here is that the common is tied to ground
while the switched legs are pulled high. This produces
the inverse of the selected value. For example, a value
showing on the switch of ‘3’ closes switches for D4 and
D4 to produce a pattern of 1100. The correct value for 3
is 0011. So, the value will have to be inverted again in
software. The reason the common pole of the switch was
grounded will become clearer in later examples where
binary decoders are used to select between many
switches. For now lets just say it goes back to a very old
TTL convention.

To read the value of the switches simply use the
dport_get() function, mask out the pins D0-D3 and shift
the resulting value into the right ordinal position by
dividing by 16. The code fragment below shows how
this is done.

FUNC none main
 LOCAL byte bcd_val
BEGIN
 dtris_set(0y11110000b)
 ; make upper for pins inputs

 REP
 ; read the pins
 =(bcd_val, dport_get())
 =(bcd_val, b_and(0xF0b, bcd_val)
 =(bcd_val, b_xor(0xF0b, bcd_val)
 =(bcd_val, /(bcd_val, 16b))
 con_out(bcd_val)
 LOOP

ENDFUN
As you can see, reading the value is actually very easy. In
practice, however, there are usually many switches
required to create a usable numeric input. There are
obviously a limited number of input pins on the TICkit, so
a method must be employed which reuses pins for multiple
switches. This method is a ‘bus’ method. By using some
small signal diodes, the switch outputs of multiple switches
can be combined on the same four I/O pins. The TICkit
can control which switch values are on the I/O lines by
controlling which switch common is low. The circuit to the
right illustrates this method.

In this circuit, diodes have been added to prevent the
switch settings of one switch from creating false readings
on another switch. Also, the switch common for each
decade switch has been tied to an I/O pin. By lowering the
common of the switch we want to read while keeping all
the other commons high, each decade switch can be read
individually. This allows us to read 12 switches by only
using 7 I/O lines. The code to read this arrangement
follows:

; program to read 3 decades
; and assemble the corresponding
; word value

FUNC none main
 LOCAL byte sw_in
 LOCAL word val_in
BEGIN
 dtris_set(0y11110000b)
 pin_high(pin_a0)
 pin_high(pin_a1)
 pin_high(pin_a2)
 ; make the pins inputs

 REP
 =(val_in, 0w)
 ; read the pins

 ; read switch one
 Pin_low(pin_a0)
 =(sw_in, dport_get())
 =(sw_in, b_and(0xF0b, sw_in)
 =(sw_in, b_xor(0xF0b, sw_in)
 =(sw_in, /(sw_in, 16b))
 Pin_high(pin_a0)

 =(val_in, +(val_in, sw_in))

 Pin_low(pin_a1)
 =(sw_in, dport_get())
 =(sw_in, b_and(0xF0b, sw_in)
 =(sw_in, b_xor(0xF0b, sw_in)
 =(sw_in, /(sw_in, 16b))
 Pin_high(pin_a1)

 =(val_in, +(val_in, *(sw_in, 10w)))

 Pin_low(pin_a2)
 =(sw_in, dport_get())
 =(sw_in, b_and(0xF0b, sw_in)
 =(sw_in, b_xor(0xF0b, sw_in)
 =(sw_in, /(sw_in, 16b))
 Pin_high(pin_a2)

 =(val_in, +(val_in, *(sw_in, 100w)))

 con_out(val_in)
 LOOP
ENDFUN

Controlling the common of each switch using an I/O
line is effective and requires little additional circuitry,
however it still may consume too many I/O lines when
many switches are required. The same basic technique
of busing the switches can be used in conjunction with a
discrete decode IC like the 74HC154 or 74HC138.
These devices bring a single output low upon the basis
of an applied binary pattern. The diagram to the right
shows a 74HC154 being used in this situation. Not all of
the switches are shown to keep the drawing size down,
but as many as 16 switches can be used in this circuit
while still only requiring 8 I/O lines. The use of the
decoder ICs demonstrates the convention of “low
active” selecting methods where the common of the
decade switches are pulled low when selected.

Usually, when many switches are used, there are several
values that are being selected. The same decoder can be
used to select switches from different “banks” to form
several values. For example switches 0 through 4 might
be used to select a starting value in and application,
while switches 5 through 9 could be used for the
stopping value. A program to read 10 switches to
assemble two values like those mentioned above is
shown here:

FUNC word read switches
 PARAM byte first_sw
 PARAM byte last_sw
 LOCAL byte cur_sw
 LOCAL byte sw_in
 LOCAL word mult 1w
BEGIN
 =(exit_value, 0w)
 =(cur_sw, first_sw)
 REP
 aport_set(b_or(cur_sw, b_and(aport_get(), 0xF8b))))
 =(sw_in, dport_get())
 =(sw_in, b_and(0xF0b, sw_in)
 =(sw_in, b_xor(0xF0b, sw_in)
 =(sw_in, /(sw_in, 16b))
 =(exit_value, +(exit_value, *(sw_in, mult)))
 LOOP
ENDFUN

FUNC none main
 LOCAL word start_val
 LOCAL word stop_val
BEGIN
 =(start_val, read_switches(0b, 4b))
 =(stop_val, read_switches(5b, 9b))
 Con_string(“Step From: “)
 Con_out(start_val)
 Con_string(“ through: “)
 Con_out(stop_val)
 Con_string(“/r/l”)
 REP
 debug_on()
 LOOP
ENDFUN

The previous circuit can
be used with other bus
oriented devices like
character LCDs. The
circuit shown to the right
uses a common 44780
based character display
which shares the four data
lines and one of the select
lines. This is a very nice
way to access a lot of
switches and output
character data while still
saving many I/O lines for
application specific
usage.

Notice that four 10K
resistors are used between
the switch bus and the
LCD this is to ensure that
no bus lines are low
through the switches
while the LCD is
outputting. This prevents
the possibility of damage
should the program
mistakenly enable LCD
output or TICkit output
while a switch is enabled.

The method for reading
the switches in this circuit
are identical to that used for the previous circuit with the additional requirement that the LCD may alter the selection
value and thus the switch selection needs to be updated before any switch is read.

The final example of a interfacing to “thumbwheel” switches uses serial techniques and inexpensive latched shift registers
to read as many switches as you want, all while using just three I/O pins on the TICkit processor. This method also had
wiring advantages when the front panel has to be cabled to the processor board. It is much easier to cable three wires than

seven, eight or more. You can consult other Protean application notes on serial I/O techniques for higher performance
methods of interfacing to shift
registers.

The circuit utilizing 74HCT165 ICs is
shown on the right. It is important to
use the HCT series of integrated
circuits as these have a TTL style
input. This means that no connection is
interpreted as high. This works well
with SPST switches like those
contained in the thumbwheel switches.
If you use HC series or some other
series of logic, you will need to put
pull-up resistors on all of the switch
outputs to ensure a high level when the
switches is not closed. The program
for interfacing to these devices is
shown below. This program utilizes
some common libraries included with
the development system of the TICkit.
You can also use the faster SPI based
serial method, but the special
considerations of this technique are
beyond the scope of this application
note.

Assuming that the notation order of the
decades corresponds to the switch
numbering. (SW1 is ones, SW2 is tens,
and so on) Software will need to adjust
the wiring wierdnesses. Also note that
you can keep adding additional 165
ICs for more switches or digital input
without requiring any more TICkit I/O
lines. Simply daisy chain the Qh from
the additional devices to the SER input
of the existing device as shown in this
diagram. Then the software generates
the additional clocks to shift that data
into the TICkit for interpretation.

; Sample program to read four BCD switches using 74HCT165 ICs

DEF tic63_i
LIB fbasic.lib

DEF u74165_rst pin_A2 ; pin A2 connects to 74HC165 RCLK select
DEF u74165_clk pin_A3 ; pin A3 connects to 74HC165 SRCLK line
DEF u74165_data pin_A4 ; pin A4 connects to 74HC165 D-IN line

LIB cn_str.lib ; console string routines

FUNC byte read_u74165
 LOCAL byte count_out 8b
BEGIN
 pin_low(u74165_clk) ; make pin an output

 =(exit_value, 0b)
 REPEAT
 =(exit_value, <<(exit_value))
 IF pin_in(u74165_data)
 ++(exit_value)
 ENDIF

 pulse_out_high(u74165_clk, 1w)
 --(count_out)
 UNTIL ==(count_out, 0b)
ENDFUN

FUNC none main
 LOCAL byte reg_byte
 LOCAL byte sw_in
 LOCAL word val_in
BEGIN
 pin_high(u74165_rst)
 pin_low(u74165_clk)
 REP
 pin_low(u74165_rst) ; latch enable chip
 pin_high(u74165_rst) ; latches inputs into shift registers

 =(Val_in, 0w)

 =(reg_byte, read_u74165())
 =(sw_in, b_xor(0xF0b, b_and(0xF0b, reg_byte)))
 =(sw_in, /(sw_in, 16b))
 =(val_in, +(val_in, sw_in))

 =(sw_in, b_xor(0x0Fb, b_and(0x0Fb, reg_byte)))
 =(val_in, +(val_in, *(sw_in, 10w)))

 =(reg_byte, read_u74165())
 =(sw_in, b_xor(0xF0b, b_and(0xF0b, reg_byte)))
 =(sw_in, /(sw_in, 16b))
 =(val_in, +(val_in, *(sw_in, 100w)))

 =(sw_in, b_xor(0x0Fb, b_and(0x0Fb, reg_byte)))
 =(val_in, +(val_in, *(sw_in, 1000w)))

 con_string(“The setting is: “)
 con_out(val_in)
 con_string("\r\l")
 LOOP
ENDFUN

This concludes this application note. BCD switches can make a very profession looking intuitive input interface for a
variety of projects and interface to them is relatively simple.

Protean Logic Inc. Copyright 10/22/2001

