

EasyUSB Application Programming Interface – Preliminary Rev 0.1 – Mar/2010 Page 1/4

EasyUSB Application Programming Interface

Preliminary Rev 0.1 – Mar/2010

1. Description

The EasyUSB API can be embedded on the device memory and it’s accessible by software
applications. Through the library functions it’s easy to communicate directly to the UART
interface and set parameters of the device.

In the current version the EasyUSB API is distributed as a static or dynamic link library (DLL).
If you need to use native functions, library customizations or other operating system
implementations, please contact the EasyUSB development team.

2. Functions

The prototypes of the functions implemented on the current version are:

char* DllVersion(void);
HANDLE Connect(char driveletter);
void Disconnect(HANDLE dev);
int Read(HANDLE dev, unsigned char *buf);
void Write(HANDLE dev, unsigned char *buf, int length);
void GetConfig(HANDLE dev, unsigned char *buf);
void SetConfig(HANDLE dev, unsigned char *buf);

2.1. DllVersion

Description: obtains the library version that’s currently in use
Prototype: char* DllVersion(void)
Parameters: none
Return Value: string with dll version

2.2. Connect

Description: connects to the EasyUSB device
Prototype: HANDLE Connect(char driveletter)
Parameters: driveletter – drive where is mounted the EasyUSB device
Return Value: handle to the EasyUSB device

EasyUSB Application Programming Interface – Preliminary Rev 0.1 – Mar/2010 Page 2/4

2.3. Disconnect

Description: disconnects from the EasyUSB device
Prototype: void Disconnect(HANDLE dev)
Parameters: dev – device handle
Return Value: none

2.4. Read

Description: reads a buffer of data sent from the device via UART
Prototype: int Read(HANDLE dev, unsigned char *buf);
Parameters: dev – device handle
 *buf – buffer pointer where read data will be copied
Return Value: number of bytes read

2.5. Write

Description: writes a buffer of data to the device via UART
Prototype: void Write(HANDLE dev, unsigned char *buf, int length)
Parameters: dev – device handle
 *buf – buffer pointer where data to be written is stored
 length – number of bytes to be written
Return Value: none

2.6. GetConfig

Description: gets configuration data block
Prototype: void GetConfig(HANDLE dev, unsigned char *buf)
Parameters: dev – device handle
 *buf – buffer pointer where read data will be copied
Return Value: none

2.7. SetConfig

Description: sets configuration data block
Prototype: void SetConfig(HANDLE dev, unsigned char *buf);
Parameters: dev – device handle
 *buf – buffer pointer where read data will be copied
Return Value: none

EasyUSB Application Programming Interface – Preliminary Rev 0.1 – Mar/2010 Page 3/4

3. Configuration data block

The configuration data is a 512 bytes block that stores the parameters of the device that
must be appropriately set by the manufacturer, according to the following table:
Config[0..1] = word with the VID (Vendor ID) of the USB interface
 default = 0xFFFF
Config[2..3] = word with the PID (Product ID) of the USB interface
 default = 0xFFFF
Config[4..7] = reserved
Config[8] = byte that indicates the baud rate of the UART interface:

0 = 9600bps
 1 = 19200bps
 2 = 38400bps
 3 = 57600bps
 4 = 115200bps
 5 = 921600bps
 default = 9600bps
Config[510..511] = signature: 0x55AA

3. Demonstration software

 For demonstrations purposes, it’s freely available the Terminal software with all the
described functions implemented:

EasyUSB Application Programming Interface – Preliminary Rev 0.1 – Mar/2010 Page 4/4

Contacts

This is a preliminary release of the EasyUSB project.

For technical questions, software, documentation and for information about producing,
distributing, licensing, please contact the developer:

easyusb@brondani.com

Disclaimer
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. The developer
assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein.
Additionally, the developer assumes no responsibility for the functioning of not described features or parameters. The developer reserves the right to make
changes without further notice. The developer makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does the developer assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. Unless specifically provided otherwise, the products are not suitable for, and shall
not be used in, automotive applications and are not intended, authorized, or warranted for use as components in applications intended to support or sustain
life. No freedom to use patents or other intellectual property rights is implied by the publication of this document.

mailto:easyusb@brondani.com�

