MJE5740, MJE5742

MJE5742 is a Preferred Device

NPN Silicon Power
 Darlington Transistors

The MJE5740 and MJE5742 Darlington transistors are designed for high-voltage power switching in inductive circuits.

Features

- $\mathrm{Pb}-$ Free Packages are Available*

Applications

- Small Engine Ignition
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls

MAXIMUM RATINGS

Rating			Symbol	Value	Unit
Collector-Emitter Voltage		$\begin{aligned} & \text { MJE } \\ & \text { MJE } \end{aligned}$	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	Vdc
Collector-Emitter Voltage		$\begin{aligned} & \text { MJE } \\ & \text { MJE } \end{aligned}$	$\mathrm{V}_{\text {CEV }}$	$\begin{aligned} & 600 \\ & 800 \end{aligned}$	Vdc
Emitter-Base Voltage			V_{EB}	8	Vdc
Collector Current	- Continuous - Peak (Note 1)		$\begin{gathered} \hline \mathrm{I}_{\mathrm{C}} \\ \mathrm{I}_{\mathrm{CM}} \end{gathered}$	$\begin{gathered} \hline 8 \\ 16 \end{gathered}$	Adc
Base Current	- Continuous - Peak (Note 1)		$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{BM}} \end{gathered}$	$\begin{gathered} 2.5 \\ 5 \end{gathered}$	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$			P_{D}	$\begin{gathered} 2 \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$			P_{D}	$\begin{gathered} 80 \\ 640 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range			$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {ӨJC }}$	1.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

POWER DARLINGTON TRANSISTORS 8 AMPERES 300-400 VOLTS 80 WATTS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (Note 2)					
Collector-Emitter Sustaining Voltage MJE5740 $\left(I_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$ MJE5742	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current }\left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated Value, } \mathrm{V}_{\mathrm{BE} \text { (off) }}=1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated Value, } \mathrm{V}_{\mathrm{BE}(\text { (off })}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$I_{\text {CEV }}$	-	-	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	mAdc
Emitter Cutoff Current ($\mathrm{V}_{\mathrm{EB}}=8 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{I}_{\text {Ebo }}$	-	-	75	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased	$\mathrm{I}_{\mathrm{S} / \mathrm{b}}$	See Figure 6
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 7

ON CHARACTERISTICS (Note 2)

$\begin{aligned} & \text { DC Current Gain }\left(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=4 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 50 \\ 200 \end{gathered}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$		-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage }\left(\mathrm{I}_{\mathrm{C}}=4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=8 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{Adc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	-	-	$\begin{gathered} 2 \\ 3 \\ 2.2 \end{gathered}$	Vdc
$\begin{aligned} & \hline \text { Base-Emitter Saturation Voltage }\left(I_{C}=4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=8 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{Adc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=4 \mathrm{Adc}, I_{\mathrm{B}}=0.2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	-	$\begin{aligned} & 2.5 \\ & 3.5 \\ & 2.4 \end{aligned}$	Vdc
Diode Forward Voltage (Note 3) ($\mathrm{I}_{\mathrm{F}}=5 \mathrm{Adc}$)	V_{f}	-	-	2.5	Vdc

SWITCHING CHARACTERISTICS

Typical Resistive Load (Table 1)						
Delay Time	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=250 \mathrm{Vdc}, \mathrm{I}_{(\mathrm{pk})}=6 \mathrm{~A}\right. \\ & \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.25 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=25 \mu \mathrm{~s}, \\ & \text { Duty Cycle } \leq 1 \%) \end{aligned}$	t_{d}	-	0.04	-	$\mu \mathrm{S}$
Rise Time		tr_{r}	-	0.5	-	$\mu \mathrm{S}$
Storage Time		$\mathrm{t}_{\text {s }}$	-	8	-	$\mu \mathrm{S}$
Fall Time		t_{f}	-	2	-	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 1)						
Voltage Storage Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}(\mathrm{pk})}=6 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}(\mathrm{pk})}=250 \mathrm{Vdc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 1}=0.06 \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=5 \mathrm{Vdc}\right) \end{aligned}$	t_{sv}	-	4	-	$\mu \mathrm{S}$
Crossover Time		t_{c}	-	2	-	$\mu \mathrm{S}$

2. Pulse Test: Pulse Width $300 \mu \mathrm{~s}$, Duty Cycle $=2 \%$.
3. The internal Collector-to-Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage $\left(\mathrm{V}_{\mathrm{f}}\right)$ of this diode is comparable to that of typical fast recovery rectifiers.

ORDERING INFORMATION

Device	Package	Shipping
MJE5740	TO-220	
MJE5740G	TO-220 (Pb-Free)	50 Units / Rail
MJE5742	TO-220	
MJE5742G	TO-220 (Pb-Free)	

MJE5740, MJE5742

TYPICAL CHARACTERISTICS

Figure 1. Power Derating

Figure 3. DC Current Gain

Figure 2. Inductive Switching Measurements

Figure 4. Base-Emitter Voltage

Table 1. Test Conditions for Dynamic Performance

Reverse bias safe operating area and inductive switching		RESISTIVE SWITCHING
	COIL DATA: $V_{\text {CC }}=30 \mathrm{~V}$ FERROXCUBE CORE \#6656 GAP FOR 200 FUH/20 A $V_{\text {CE(pk) }}=250 \mathrm{Vdc}$ FULL BOBBIN (~ 16 TURNS) \#16 $\mathrm{L}_{\text {coil }}=200 \mu \mathrm{H}$ $\mathrm{I}_{\text {(} \text { (pk })}=6 \mathrm{~A}$	$\begin{aligned} & V_{\text {CC }}=250 \mathrm{~V} \\ & \mathrm{D} 1=1 \text { N } 5820 \text { OR EQUIV. } \end{aligned}$
	OUTPUT WAVEFORMS	 $\mathrm{t}_{\mathrm{n}}, \mathrm{t}_{\mathrm{t}}<10 \mathrm{~ns}$ DUTY CYCLE $=1 \%$ R_{B} AND RC ADJUSTED FOR DESIRED I_{B} AND I_{C}

Figure 5. Inductive Switching Measurements

MJE5740, MJE5742

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}} \geq 25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 1.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turnoff. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 7 gives the complete RBSOA characteristics.

The Safe Operating Area figures shown in Figures 6 and 7 are specified ratings for these devices under the test conditions shown.

Figure 6. Forward Bias Safe Operating Area

Figure 7. Reverse Bias Safe Operating Area

RESISTIVE SWITCHING PERFORMANCE

Figure 8. Turn-On Time

Figure 9. Turn-Off Time

MJE5740, MJE5742

PACKAGE DIMENSIONS

TO-220AB
CASE 221A-09
ISSUE AA

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
\mathbf{Z}	---	0.080	---	2.04

STYLE 1 :
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: ON Semiconductor and (IN) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
 Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

