INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT242Quad bus transceiver; 3-state; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

Quad bus transceiver; 3-state; inverting

74HC/HCT242

FEATURES

- Inverting 3-state outputs
- 2-way asynchronous data bus communication
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT242 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL

(LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT242 are quad bus transceivers featuring inverting 3-state bus compatible outputs in both send and receive directions.

They are designed for 4-line asynchronous 2-way data communications between data buses.

The output enable inputs $(\overline{OE}_A \text{ and } OE_B)$ can be used to isolate the buses.

The "242" is similar to the "243" but has inverting outputs.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	LINUT		
STIVIBUL	PARAMETER	CONDITIONS	нс	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; B _n to A _n	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	7	10	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{I/O}	input/output capacitance		10	10	pF	
C _{PD}	power dissipation capacitance per transceiver	notes 1 and 2	29	32	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

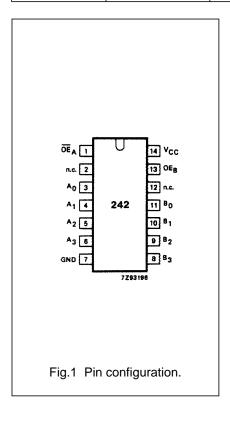
 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

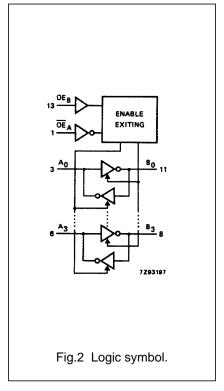
C_L = output load capacitance in pF

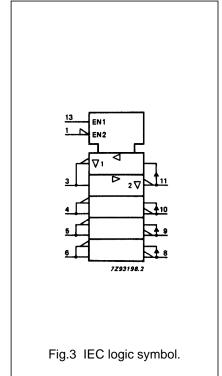
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

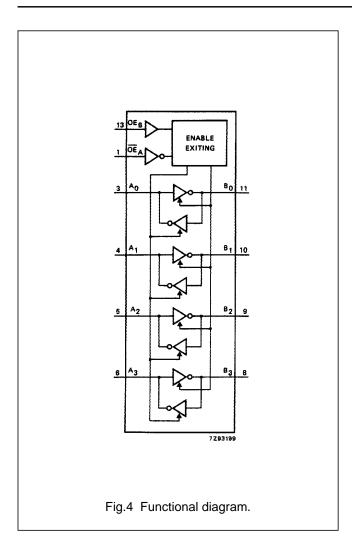

See "74HC/HCT/HCU/HCMOS Logic Package Information".


Quad bus transceiver; 3-state; inverting


74HC/HCT242

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	OE _A	output enable input (active LOW)
2, 12	n.c.	not connected
3, 4, 5, 6	A ₀ to A ₃	data inputs/outputs
7	GND	ground (0 V)
11, 10, 9, 8	B ₀ to B ₃	data inputs/outputs
13	OEB	output enable input
14	V _{CC}	positive supply voltage



Quad bus transceiver; 3-state; inverting

74HC/HCT242

FUNCTION TABLE

INP	UTS	INPUTS/OUTPUTS					
OE _A OE _B		A _n	B _n				
L	L	inputs	$B = \overline{A}$				
Н	L	Z	Z				
L	Н	Z	Z				
Н	Н	$A = \overline{B}$	inputs				

Note

1. H = HIGH voltage level

L = LOW voltage level

Z = high impedance OFF-state

Philips Semiconductors Product specification

Quad bus transceiver; 3-state; inverting

74HC/HCT242

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	VVAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(',	
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; B _n to A _n		25 9 7	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.5
t _{PZH} / t _{PZL}			41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Figs 6 and 7
t _{PHZ} / t _{PLZ}			52 19 15	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Figs 6 and 7
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.5

Philips Semiconductors Product specification

Quad bus transceiver; 3-state; inverting

74HC/HCT242

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
A _n	1.10						
B _n	1.10						
\overline{OE}_A	1.00						
OEB	1.00						

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT							UNIT		WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	VVAVEFORIVIS
		min.	typ.	max.	min.	max.	min.	max.		(')	
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; B _n to A _n		12	20		25		30	ns	4.5	Fig.5
t _{PZH} / t _{PZL}			16	34		43		51	ns	4.5	Figs 6 and 7
t _{PHZ} / t _{PLZ}			22	35		44		53	ns	4.5	Figs 6 and 7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.5

Philips Semiconductors Product specification

Quad bus transceiver; 3-state; inverting

74HC/HCT242

AC WAVEFORMS

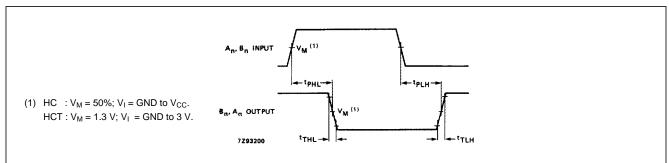
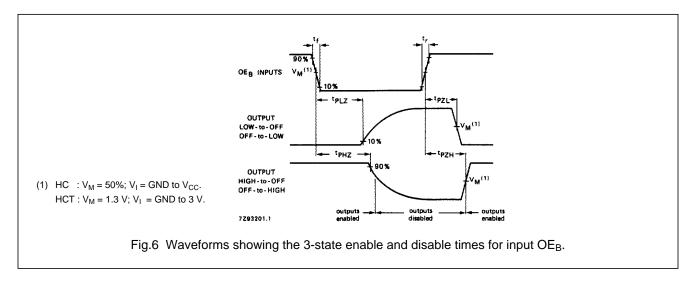
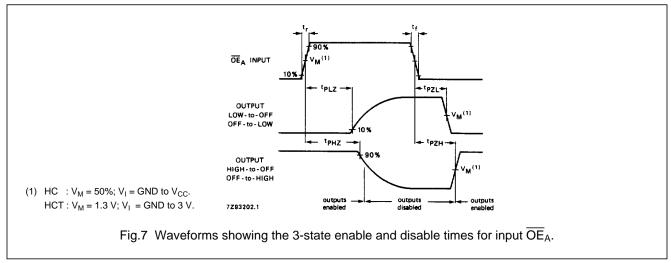




Fig.5 Waveforms showing the input (A_n, B_n) to output (B_n, A_n) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".