## FAIRCHILD

SEMICONDUCTOR

# **CD4528BC Dual Monostable Multivibrator**

#### **General Description**

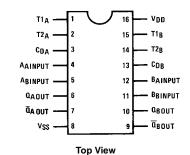
The CD4528B is a dual monostable multivibrator. Each device is retriggerable and resettable. Triggering can occur from either the rising or falling edge of an input pulse, resulting in an output pulse over a wide range of widths. Pulse duration and accuracy are determined by external timing components Rx and Cx.

#### **Features**

- Wide supply voltage range: 3.0V to 18V
- Separate reset available
- Quiescent current = 5.0 nA/package (typ.) at 5.0 V<sub>DC</sub>

October 1987

Revised August 2000


- Diode protection on all inputs
- Triggerable from leading or trailing edge pulse
- Capable of driving two low-power TTL loads or one lowpower Schottky TTL load over the rated temperature range

#### **Ordering Code:**

| CD4528BCM M16A 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 |          |
|-------------------------------------------------------------------------------------|----------|
|                                                                                     | ) Narrow |
| CD4528BCN N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 W   | /ide     |

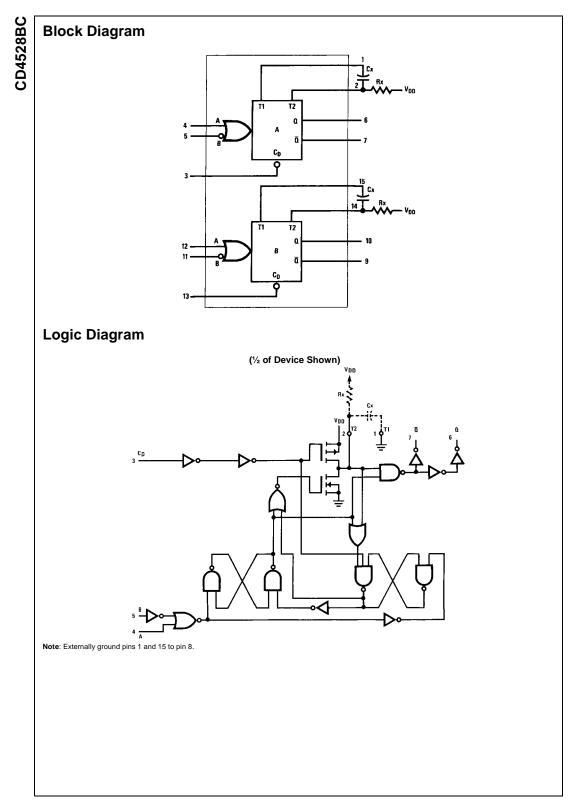
and Reel. Specify by appending the suffix letter "X" to the ordering code

#### **Connection Diagram**



|   |              | Inputs |              | Out | puts |
|---|--------------|--------|--------------|-----|------|
|   | Clear        | Α      | В            | Q   | Q    |
|   | L            | Х      | Х            | L   | Н    |
|   | Х            | Н      | Х            | L   | Н    |
|   | Х            | Х      | L            | L   | Н    |
|   | Н            | L      | $\downarrow$ | л   | Ъ    |
|   | н            | Ŷ      | Н            | л   | Ϋ́   |
| H | = HIGH Level |        |              |     |      |

L = LOW Level


 $\uparrow$  = Transition from LOW-to-HIGH ↓ = Transition from HIGH-to-LOW

\_\_\_ = One HIGH Level Pulse

Truth Table

X = Irrelevant

CD4528BC Dual Monostable Multivibrator



www.fairchildsemi.com

### Absolute Maximum Ratings(Note 1)

| (Note 2)                                     |                                         |
|----------------------------------------------|-----------------------------------------|
| DC Supply Voltage (V <sub>DD</sub> )         | –0.5 $V_{DC}$ to +18 $V_{DC}$           |
| Input Voltage, All Inputs (V <sub>IN</sub> ) | –0.5 $V_{DC}$ to $V_{DD}$ +0.5 $V_{DC}$ |
| Storage Temperature Range $(T_S)$            | -65°C to +150°C                         |
| Power Dissipation (P <sub>D</sub> )          |                                         |
| Dual-In-Line                                 | 700 mW                                  |
| Small Outline                                | 500 mW                                  |
| Lead Temperature (T <sub>L</sub> )           |                                         |
| (Soldering, 10 seconds)                      | 260°C                                   |
|                                              |                                         |

#### **Recommended Operating** Conditions (Note 2)

DC Supply Voltage (V<sub>DD</sub>)

Input Voltage (VIN)

0V to  $V_{\text{DD}}\,V_{\text{DC}}$  $-40^{\circ}C$  to  $+85^{\circ}C$ 

3V to 15V

**CD4528BC** 

Operating Temperature Range (T<sub>A</sub>) Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be oper-

ated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2:  $V_{SS} = 0V$  unless otherwise specified.

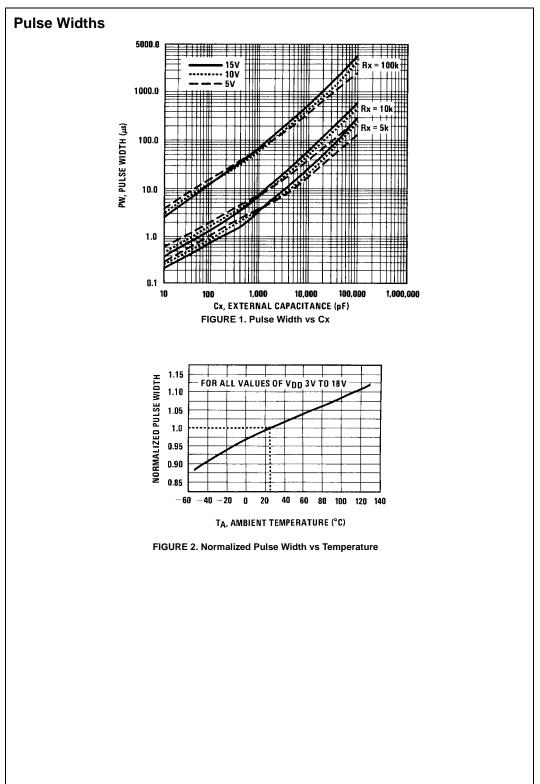
0.3

10<sup>-5</sup> 0.3

| Symbol          | Parameter                 | Conditions                                   | -4    | 0°C  | +25°C |                   |      | +8    | 5°C  | Unite |
|-----------------|---------------------------|----------------------------------------------|-------|------|-------|-------------------|------|-------|------|-------|
| Symbol          | Parameter                 | Conditions                                   | Min   | Max  | Min   | Тур               | Max  | Min   | Max  | Units |
| I <sub>DD</sub> | Quiescent Device Current  | $V_{DD} = 5V$                                |       | 20   |       | 0.005             | 20   |       | 150  | μA    |
|                 |                           | $V_{DD} = 10V$                               |       | 40   |       | 0.010             | 40   |       | 300  | μA    |
|                 |                           | $V_{DD} = 15V$                               |       | 80   |       | 0.015             | 80   |       | 600  | μA    |
| V <sub>OL</sub> | LOW Level Output Voltage  | $V_{DD} = 5V$                                |       | 0.05 |       |                   | 0.05 |       | 0.05 | V     |
|                 |                           | $V_{DD} = 10V$                               |       | 0.05 |       |                   | 0.05 |       | 0.05 | V     |
|                 |                           | $V_{DD} = 15V$                               |       | 0.05 |       |                   | 0.05 |       | 0.05 | V     |
| V <sub>OH</sub> | HIGH Level Output Voltage | $V_{DD} = 5V$                                | 4.95  |      | 4.95  | 5.0               |      | 4.95  |      | V     |
|                 |                           | $V_{DD} = 10V$                               | 9.95  |      | 9.95  | 10.0              |      | 9.95  |      | V     |
|                 |                           | $V_{DD} = 15V$                               | 14.95 |      | 14.95 | 15.0              |      | 14.95 |      | V     |
| V <sub>IL</sub> | LOW Level Input Voltage   | $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ |       | 1.5  |       | 2.25              | 1.5  |       | 1.5  | V     |
|                 |                           | $V_{DD} = 10V, V_O = 1V \text{ or } 9V$      |       | 3.0  |       | 4.50              | 3.0  |       | 3.0  | V     |
|                 |                           | $V_{DD}$ = 15V, $V_O$ = 1.5V or 13.5V        |       | 4.0  |       | 6.75              | 4.0  |       | 4.0  | V     |
| VIH             | HIGH Level Input Voltage  | $V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ | 3.5   |      | 3.5   | 2.75              |      | 3.5   |      | V     |
|                 |                           | $V_{DD} = 10V$ , $V_O = 1V$ or $9V$          | 7.0   |      | 7.0   | 5.50              |      | 7.0   |      | V     |
|                 |                           | $V_{DD}$ = 15V, $V_O$ = 1.5V or 13.5V        | 11.0  |      | 11.0  | 8.25              |      | 11.0  |      | V     |
| I <sub>OL</sub> | LOW Level Output Current  | $V_{DD} = 5V, V_{O} = 0.4V$                  | 0.52  |      | 0.44  | 0.88              |      | 0.36  |      | mA    |
|                 | (Note 4)                  | $V_{DD} = 10V, V_{O} = 0.5V$                 | 1.3   |      | 1.1   | 2.25              |      | 0.9   |      | mA    |
|                 |                           | $V_{DD} = 15V, V_{O} = 1.5V$                 | 3.6   |      | 3.0   | 8.8               |      | 2.4   |      | mA    |
| I <sub>OH</sub> | HIGH Level Output Current | $V_{DD} = 5V, V_{O} = 4.6V$                  | -0.2  |      | -0.16 | -0.36             |      | -0.12 |      | mA    |
|                 | (Note 4)                  | $V_{DD} = 10V, V_{O} = 9.5V$                 | -0.5  |      | -0.4  | -0.9              |      | -0.3  |      | mA    |
|                 |                           | $V_{DD} = 15V, V_O = 13.5V$                  | -1.4  |      | -1.2  | -3.5              |      | -1.0  |      | mA    |
| I <sub>IN</sub> | Input Current             | $V_{DD} = 15V, V_{IN} = 0V$                  |       | -0.3 |       | -10 <sup>-5</sup> | -0.3 |       | -1.0 | μA    |
|                 |                           |                                              |       |      |       |                   |      |       |      |       |

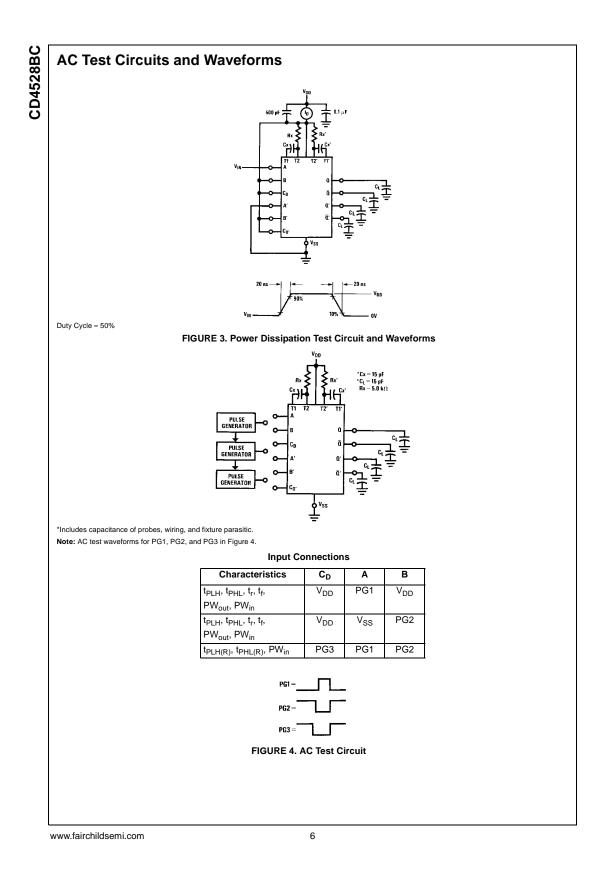
V<sub>DD</sub> = 15V, V<sub>IN</sub> = 15V

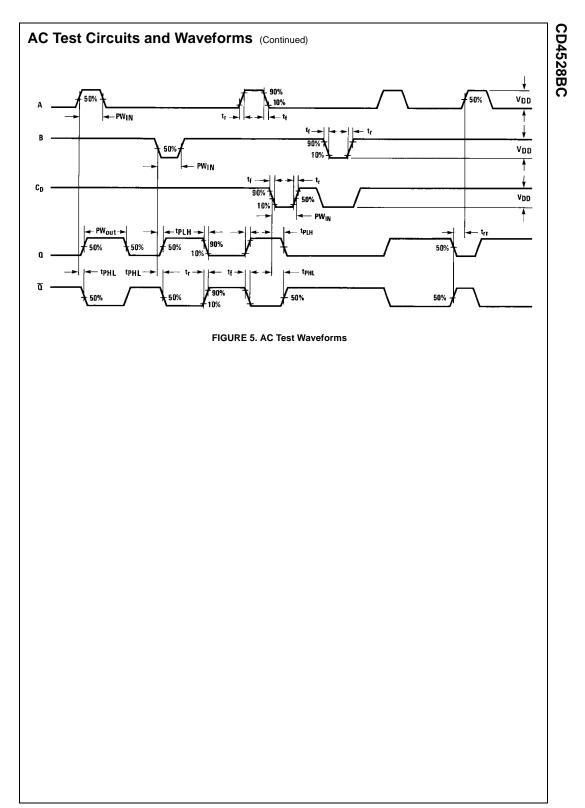
Note 3:  $V_{SS} = 0V$  unless otherwise specified.


Note 4:  $I_{OH}$  and  $I_{OL}$  are tested one output at a time.

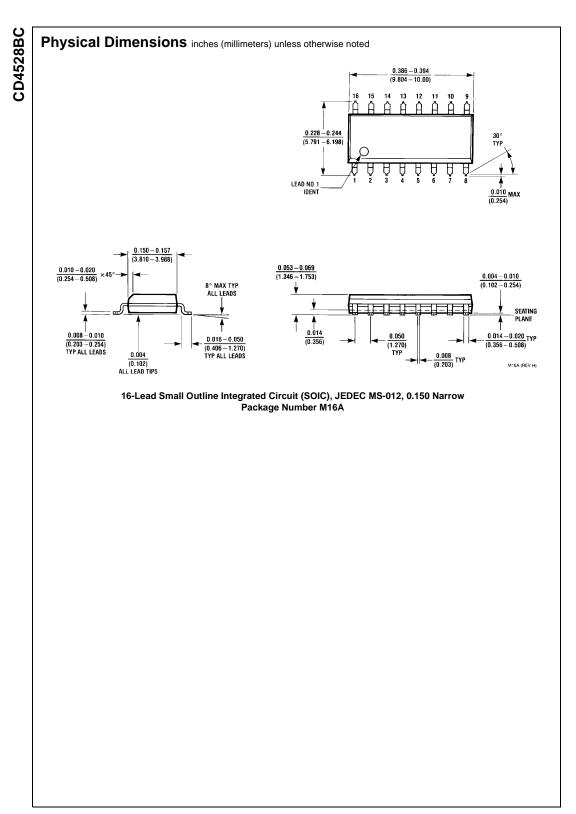
www.fairchildsemi.com

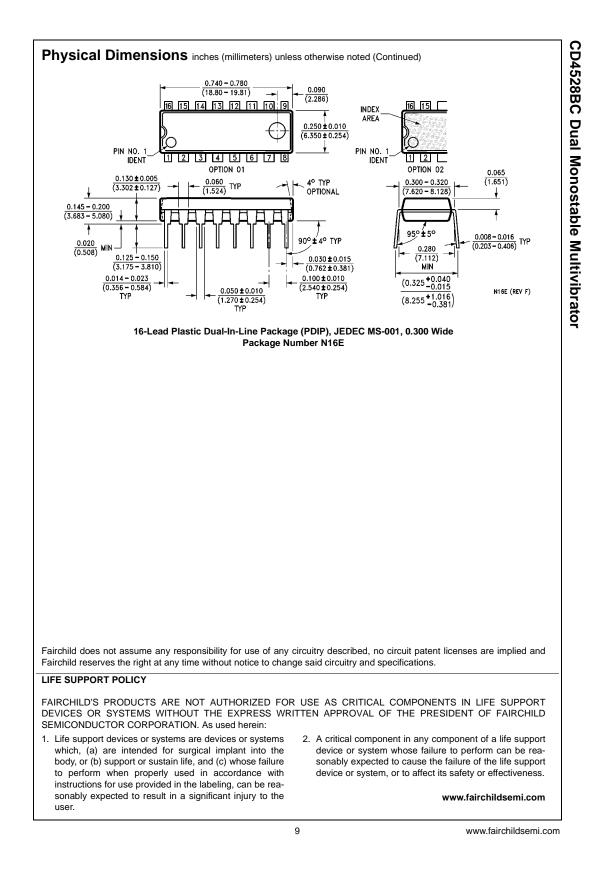
1.0


μΑ


| Symbol                                                    | Parameter                                                | t $t_r = t_f = 20$ ns, unless otherwise specified<br>Conditions                                              | Min | Тур | Max | Uni |
|-----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|
| t <sub>r</sub>                                            | Output Rise Time                                         | $t_r = (3.0 \text{ ns/pF}) C_L + 30 \text{ ns}, V_{DD} = 5.0 \text{V}$                                       |     | 180 | 400 | ns  |
|                                                           |                                                          | $t_r = (1.5 \text{ ns/pF}) C_L + 15 \text{ ns}, V_{DD} = 10.0 \text{V}$                                      |     | 90  | 200 | ns  |
|                                                           |                                                          | $t_r = (1.1 \text{ ns/pF}) C_L + 10 \text{ ns}, V_{DD} = 15.0 \text{V}$                                      |     | 65  | 160 | ns  |
| t <sub>f</sub>                                            | Output Fall Time                                         | $t_f = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}, V_{DD} = 5.0 \text{V}$                                       |     | 100 | 200 | ns  |
|                                                           |                                                          | $t_f = (0.75 \text{ ns/pF}) \text{ C}_L + 12.5 \text{ ns}, \text{ V}_{DD} = 10 \text{ V}$                    |     | 50  | 100 | ns  |
|                                                           |                                                          | $t_f = (0.55 \text{ ns/pF}) \text{ C}_L + 9.5 \text{ ns}, \text{ V}_{DD} = 15.0 \text{V}$                    |     | 35  | 80  | ns  |
| t <sub>PLH</sub>                                          | Turn-Off, Turn-On Delay                                  | $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_{L} + 240 \text{ ns}$ , $\text{V}_{DD} = 5.0 \text{ V}$ |     | 230 | 500 | ns  |
| t <sub>PHL</sub>                                          | A or B to Q or $\overline{Q}$                            | $t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 8 \text{ ns}, \text{ V}_{DD} = 10.0 \text{ V}$      |     | 100 | 250 | ns  |
|                                                           | $Cx = 15 \text{ pF}, \text{ Rx} = 5.0 \text{ k}\Omega$   | $t_{\text{PLH}},t_{\text{PHL}}$ = (0.5 ns/pF) C_L + 65 ns, $V_{\text{DD}}$ = 15.0V                           |     | 65  | 150 | ns  |
|                                                           | Turn-Off, Turn-On Delay                                  | $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_{L} + 620 \text{ ns}$ , $\text{V}_{DD} = 5.0 \text{ V}$ |     | 230 | 500 | ns  |
|                                                           | A or B to Q or Q                                         | $t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 257 \text{ ns}, \text{ V}_{DD} = 10.0 \text{ V}$    |     | 100 | 250 | ns  |
|                                                           | $Cx = 100 \text{ pF}, \text{ Rx} = 10 \text{ k}\Omega$   | $t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_{L} + 185 \text{ ns}, \text{ V}_{DD} = 15.0 \text{ V}$     |     | 65  | 150 | ns  |
| t <sub>WL</sub>                                           | Minimum Input Pulse Width                                | $V_{DD} = 5.0V$                                                                                              |     | 60  | 150 | ns  |
| t <sub>WH</sub>                                           | A or B                                                   | $V_{DD} = 10.0V$                                                                                             |     | 20  | 50  | ns  |
|                                                           | $Cx = 15 \text{ pF}, \text{ Rx} = 5.0 \text{ k}\Omega$   | $V_{DD} = 15V$                                                                                               |     | 20  | 50  | ns  |
|                                                           | $Cx = 1000 \text{ pF}, \text{ Rx} = 10 \text{ k}\Omega$  | $V_{DD} = 5.0V$                                                                                              |     | 60  | 150 | ns  |
|                                                           |                                                          | $V_{DD} = 10.0V$                                                                                             |     | 20  | 50  | ns  |
|                                                           |                                                          | $V_{DD} = 15.0V$                                                                                             |     | 20  | 50  | ns  |
| PW <sub>OUT</sub>                                         | Output Pulse Width Q or $\overline{Q}$                   | V <sub>DD</sub> = 5.0V                                                                                       |     | 550 |     | ns  |
|                                                           | For Cx < 0.01 μF (See Graph                              |                                                                                                              |     |     |     |     |
|                                                           | for Appropriate V <sub>DD</sub> Level)                   | $V_{DD} = 10.0V$                                                                                             |     | 350 |     | ns  |
|                                                           | $Cx = 15 \text{ pF}, \text{Rx} = 5.0 \text{ k}\Omega$    | V <sub>DD</sub> = 15.0V                                                                                      |     | 300 |     | ns  |
|                                                           | For Cx > 0.01 µF Use                                     | $V_{DD} = 5.0V$                                                                                              | 15  | 29  | 45  | μs  |
|                                                           | $PW_{out} = 0.2 Rx Cx ln [V_{DD} - V_{SS}]$              | $V_{DD} = 10.0V$                                                                                             | 10  | 37  | 90  | μs  |
|                                                           | $Cx = 10,000 \text{ pF}, \text{Rx} = 10 \text{ k}\Omega$ | V <sub>DD</sub> = 15.0V                                                                                      | 15  | 42  | 95  | μs  |
| t <sub>PLH</sub>                                          | Reset Propagation Delay,                                 | $V_{DD} = 5.0V$                                                                                              |     | 325 | 600 | ns  |
| t <sub>PHL</sub>                                          | t <sub>PLH</sub> , t <sub>PHL</sub>                      | $V_{DD} = 10.0V$                                                                                             |     | 90  | 225 | ns  |
|                                                           | $Cx = 15 \text{ pF}, \text{Rx} = 5.0 \text{ k}\Omega$    | V <sub>DD</sub> = 15.0V                                                                                      |     | 60  | 170 | ns  |
|                                                           | $Cx = 1000 \text{ pF}, \text{ Rx} = 10 \text{ k}\Omega$  | V <sub>DD</sub> = 5.0V                                                                                       |     | 7.0 |     | μs  |
|                                                           |                                                          | V <sub>DD</sub> = 10.0V                                                                                      |     | 6.7 |     | μs  |
|                                                           |                                                          | V <sub>DD</sub> = 15.0V                                                                                      |     | 6.7 |     | μs  |
| t <sub>RR</sub>                                           | Minimum Retrigger Time                                   | $V_{DD} = 5.0V$                                                                                              |     | 0   |     | ns  |
|                                                           | $Cx = 15 \text{ pF}, \text{Rx} = 5.0 \text{ k}\Omega$    | V <sub>DD</sub> = 10.0V                                                                                      |     | 0   |     | ns  |
|                                                           |                                                          | V <sub>DD</sub> = 15.0V                                                                                      |     | 0   |     | ns  |
|                                                           | $Cx = 1000 \text{ pF}, \text{ Rx} = 10 \text{ k}\Omega$  | $V_{DD} = 5.0V$                                                                                              |     | 0   |     | ns  |
|                                                           |                                                          | $V_{DD} = 10.0V$                                                                                             |     | 0   |     | ns  |
|                                                           |                                                          | $V_{DD} = 15.0V$                                                                                             |     | 0   |     | ns  |
| Pulse Widtl                                               | h Match between Circuits                                 | $V_{DD} = 5.0V$                                                                                              |     | 6   | 25  | %   |
| in the Same                                               | e Package                                                | $V_{DD} = 10.0V$                                                                                             |     | 8   | 35  | %   |
| $Cx = 10,000 \text{ pF}, \text{ Rx} = 10 \text{ k}\Omega$ |                                                          | $V_{DD} = 15.0V$                                                                                             |     | 8   | 35  | %   |




CD4528BC


www.fairchildsemi.com





www.fairchildsemi.com



