

Data sheet acquired from Harris Semiconductor SCHS062B – Revised July 2003

CMOS Binary Rate Multiplier

High-Voltage Types (20-Volt Rating)

rate multiplier that provides an output pulse rate multiplier that provides an output pulse rate that is the clock-input-pulse rate multiplied by 1/16 times the binary input. For example, when the binary input number is 13, there will be 13 output pulses for every 16 input pulses. This device may be used in conjunction with an up/down counter and control logic used to perform arithmetic operations (adds, subtract, divide, raise to a power), solve algebraic and differential equations, generate natural logarithms and trigometric functions, A/D and D/A conversions, and frequency division.

For words of more than 4 bits, CD4089B devices may be cascaded in two different modes: an Add mode and a Multiply mode (see Figs. 14 and 15). In the Add mode some of the gaps left by the more significant unit at the count of 15 are filled in by the less significant units. For example, when two units are cascaded in the Add mode and programmed to 11 and 13, respectively, the more significant unit will have 11 output pulses for every 16 input pulses and the other unit will have 13 output pulses for every 256 input pulses for a total of

 $\frac{11}{16} + \frac{13}{256} = \frac{189}{256}$

In the Multiply mode the fraction programmed into the first rate multiplier is multiplied by the fraction programmed into the second multiplier. Thus the output rate will be 11 13 143

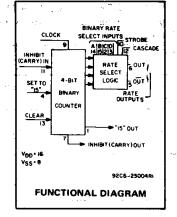
16 16 256

Features:

- Cascadable in: multiples of 4-bits
- Set to "15" input and "15" detect output
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V

Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"


Applications:

- Numerical control
- Instrumentation
- Digital filtering
- Frequency synthesis

The CD4089B has an internal synchronous 4-bit counter which, together with one of the four binary input bits, produces pulse trains as shown in Fig. 2.

If more than one binary input bit is high, the resulting pulse train is a combination of the separate pulse trains as shown in Fig. 2.

The CD4089B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

CD4089B Types

Fig. 1 — Typical output low (sink) current characteristics.

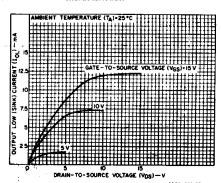
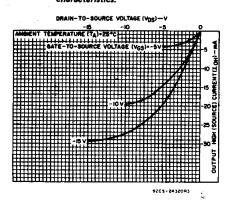
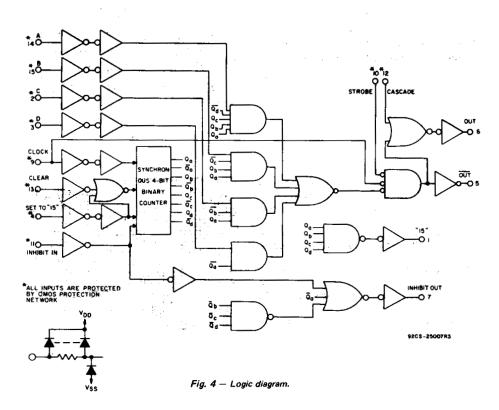


Fig. 2 - Minimum output low (sink) current characteristics.




Fig. 3 — Typical output high (source) current characteristics.

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD)

Copyright © 2003, Texas Instruments Incorporated

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		V _{DD}	LIÑ	UNITS	
	·	(V)	Min.	Max.	
Supply-Voltage Range (For TA Temperature Range)	= Full Package-		3	18	٧
Set or Clear Pulse Width,	tw	5 10 15	160 90 60	<u> </u>	ns
Clock Pulse Width,	t _W	5 10 15	330 170 100	- - -	ns
Clock Frequency,	^f CL	5 10 15	dc	1.2 2.5 3.5	MHz
Clock Rise or Fall Time.	trCL or tfCL	5, 10,15	_	15	μς
Inhibit In Setup Time,	^t su	5 10 15	100 40 20	_ _ _	ns
Inhibit In Removal Time,	[‡] REM	5 10 15	240 130 110		ns
Set Removal Time,	[†] REM	5 10 15	150 80 50	= * * * * * * * * * * * * * * * * * *	ns
Clear Removal Time,	^t REM	5 10 15	60 40 30	_ _ _	ns

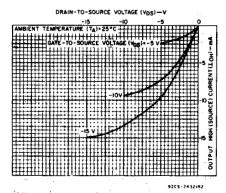


Fig. 5 — Minimum output high (source) current characteristics.

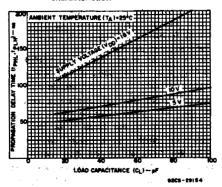


Fig. 6 — Typical propagation delay time as a function of load capacitance (Clock or Strobe to Out).

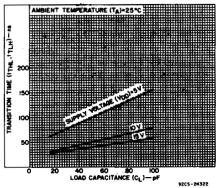


Fig. 7 — Typical transition time as a function of load capacitance.

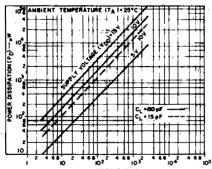


Fig. 8 — Typical dynamic power dissipation as a function of input frequency.

CD4089B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TES			UNITS		
		V _{DD}		214113		
		v	Min.	Тур.	Max.	
Propagation Delay Time, tpHL, tpLH		5	_	110	220	
Clock to Out		10	-	55	110	
	<u> </u>	15	<u> </u>	45	90	ns
		5	-	150	300	
Clock or Strobe to Out		10	-	75	150	
	 	15		60	120	
Clock to Inhibit Out	•	5 10	_	360	720	
High Level to Low Level	[15	_	160 110	320 220	ns
	——	5		250	500	
Low Level to High Level		10	_	100	200	ns
i		15	_	75	150	
		5	_	380	760	
Clear to Out		10	-	175	350	ns
		15		130	260	
8		5	<u> </u>	300	600	
Clock to "9" or "15" Out		10	-	125	250	ns
		15	_	90	180	
Cascade to Out		5		90	180	
Cascade to Out		10 15	_ '	45 35	90 70	ns
-		5		160		
Inhibit In to Inhibit Out		10	<u>-</u>	75	320 150	
		15	_	55	110	
:		5	_	330	660	ns
Set to Out		10	-	150	300	
		15		110	220	
		5	-	100	200	
Transition Time, tTHL, tTLH		10	-	50	100	ns
		15	_	40	80	
Maniana Charle Frances of		5	1.2	2.4	-	
Maximum Clock Frequency, fCL		10 15	2.5 3.5	5 7	-	MHz
		_	3.3		220	
Minimum Clock Pulse Width, tw		5 10	_	165 85	330 170	ns
		15	_ 1	50	100	113
		5	_	_	15	
Clock Rise or Fall Time, t _{rCL} , t _{fCL}		10	. —	<u> </u>	15	μs
<u> </u>		15		_	15	
	*	5	_	80	160	
Minimum Set or Clear Pulse Width, † t $_{ m W}$		10	-	45	90	ns
		15		30	60	. <u> </u>
		5	- '	50 20	100	
Minimum Inhihit In Satus Time	l			/[]	40	
Minimum Inhibit-In Setup Time, t _{SU}		10 15	_			ns
30		15	-	10	20	
Minimum Inhibit-In Setup Time, t _{SU} Minimum Inhibit In Removal Time, ^t REM			- - -			ns

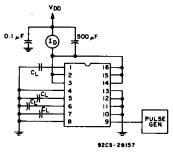


Fig. 9 — Dynamic power dissipation test circuit.

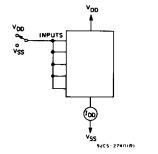


Fig. 10 - Quiescent device current test circuit.

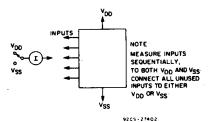


Fig. 11 - Input-current test circuit.

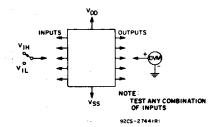
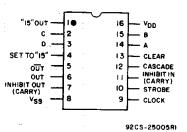



Fig. 12 - Input-voltage test circuit.

TOP VIEW
TERMINAL ASSIGNMENT

CD4089B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C (cont'd) Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TEST CONDITIO	TEST CONDITIONS					
		v_{DD}	LIMITS				
		V	Min.	Тур.	Max.		
Minimum Set Removal Time, tREM	1	5 10 15	-	75 40 25	150 80 50	ns	
Minimum Clear Removal Time, tRE	М	5 10 15	- - -	30 20 15	60 40 30	ns	
Input Capacitance, C _{IN}	Any Input	-	:- "	5	7.5	pF	

STATIC	FI FCTRICAL	CHARACTERISTICS
314116	ELECINICAL	CHARACTERISTICS

CHARAC- TERISTIC	CON	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)							N - T	
	V _O	V _{IN}	V _{DD}	55	40	+85	+125	Min.	+25 Typ.	Max.	S	
		0.5	5	5	5	150	150		0.04	5	┝	
Quiescent Device	_	0,10	10	10	10	300	300		0.04	10	μA	
Current,	_	0,15	15	20	20	600	600	_	0.04	20	μ,	
IDD Max.	_	0,20	20	100	100	3000	3000	_	0.08	100	l	
	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	Н	
Output Low (Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	mA	
Output High (Source) Current, OH Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_		
	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_		
	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	+3.2	_		
	9.5	0,10	10	1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-		
	13.5	0,15	15	-4.2	-4	-2.8	- 2.4	-3.4	-6.8			
Output Voltage:	_	0,5	5		0	.05		0	0.05	T		
Low-Level,	_	0,10	10		0	.05		0	0.05	1		
VOL Max.	_	0,15	15		0	.05	-	0	0.05	l 、		
Output	-	0,5	-5		4	4.95	5	_	1			
Voltage:	_	0,10	10		9	.95	9.95	10	_	1		
High-Level, VOH ^{Min.}	-	0,15	15		14	14.95	15	-	1			
	0.5,4.5	_	5			1.5		-	_	1.5	Г	
Input Low Voltage	1,9	-	10			3	_	_	3]		
V _{IL} Max.	1.5,13.5	,	15	4				-	- 1	4	Ì٧	
Input High	0.5,4.5	. –	5			3.5		3.5	. –	-	1	
Voltage,	1,9	-	10			7		7	-	_		
V _{IH} Min.	1.5,13.5	_	15			11		11		-	L	
Input Current		0,18	18.	±0.1	±0.1	±1	±1.	. –	±10-5	±0.1	μ	

	TRUTH TABLE												
	INPUTS								OUTPUTS				
Number of Pulses or Input Logic Level (0 = Low; 1 = High; X = Don't Care)								Number of Pulses or Output Logic Level (L = Low; H = High)					
D	С	В	A	CLK	INH IN	STR	CAS	CLR	SET	OUT	OUT	INH OUT	"15" OUT
0	0	0	0	16	0	0	0	0	0	L	Н	1	1
0	0	0	1	16	0	0	0	0	0	1	1	1	1
0	0	1	0	16	0	0	0	0	0	2	2	1	1.
0	0	1	1	16	0	0	0	0	0	3	. 3	1.	1
0	1	0	0	16	0	0	0	0	0	4	4	1	1
0	1	0	1	16	0	0	0	0	0	5	5	1] 1]
0	1	1	0	16	0	0	0	0	0	6	6	1	1
0	1	1	1	16	0	0	0	0	0	7	7	1	1
1	0	0	0	16	0	0	0	0	0	8	8	1	1
1	0	0	1	16	0	0	0	0	0	9	9	1	1
1	0	1	0	16	0	. 0	0	0	0	10	10	1	1
1	0	1	1	16	0	0	0	0	0	. 11	11	. 1	1
1	1	0	0	16	0	0	9	0	0	12	12	1	1
1	1	0	1	16	0	0	0	0	0	13	13	1	1
1	1	1	0	16	0	0	0	0	0	14	14	1	1
1	1	1	1	16	0	0	0	0	0	15	15	1	1
x	x	x	х	16	1	0	- O	0	0	†	t	н	†
X	X	х	X	16	0	1	0	0	0	L	н	1	1
X	X	х	X	16	0	0	1	0	0	н	*	1	1
1	х	Х	Х	16	0	0	0	1	0	16	16	Н	L
0	Х	Х	X	16	0	0	0	1	0	L	Н	н	L
X	X	Х	X	16	0	-0	0	X	1	L	н	L	Н {

MOST SIGNIFICAN'	T LEAST SIGNIFIÇANT DIGIT
O C DRM O OUT O CLOCK OUT CASC ST CLEAR S	B ORM © OUT 1 C OWN OUT 1 O INH OUT CLOCK CASC INH IN IST
CLOCK	92 CS - 25008

Fig. 13 – Two CD4089B's cascaded in the "Add" mode with a preset number

of 189
$$\left(\frac{11}{16} + \frac{13}{256} = \frac{189}{256}\right)$$

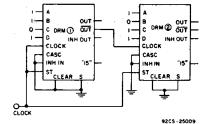


Fig. 14 —Two CD4089B's cascaded in the "Multiply" mode with a preset number

of 143
$$\left(\frac{11}{16} \times \frac{13}{16} = \frac{143}{256}\right)$$
.

* Output same as the first 16 lines of this truth table (depending on values of A, B, C, D).

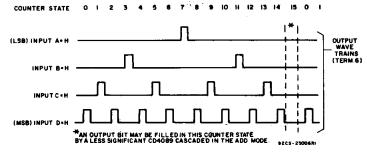
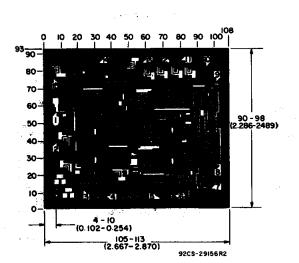



Fig. 15 - Timing diagram.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Dimensions and Pad Layout for CD4089BH

[†] Depends on internal state of counter.

.com 26-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD4089BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4089BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4089BF3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD4089BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4089BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4089BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4089BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4089BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4089BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

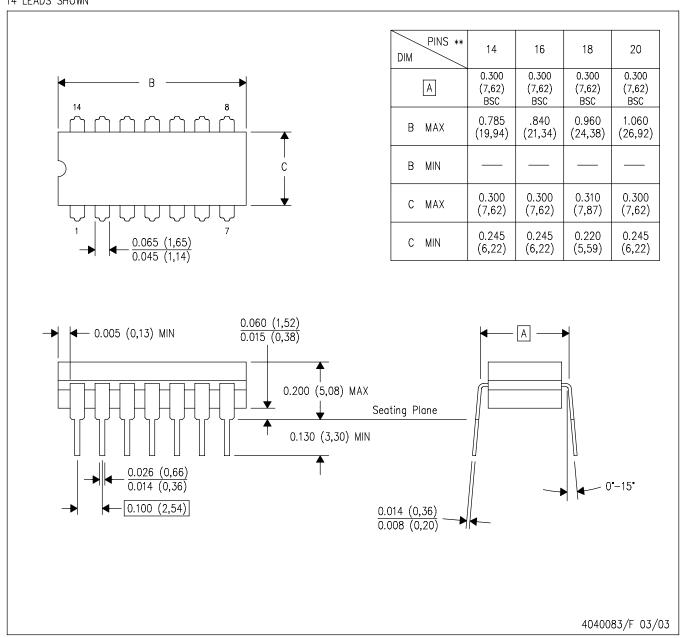
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

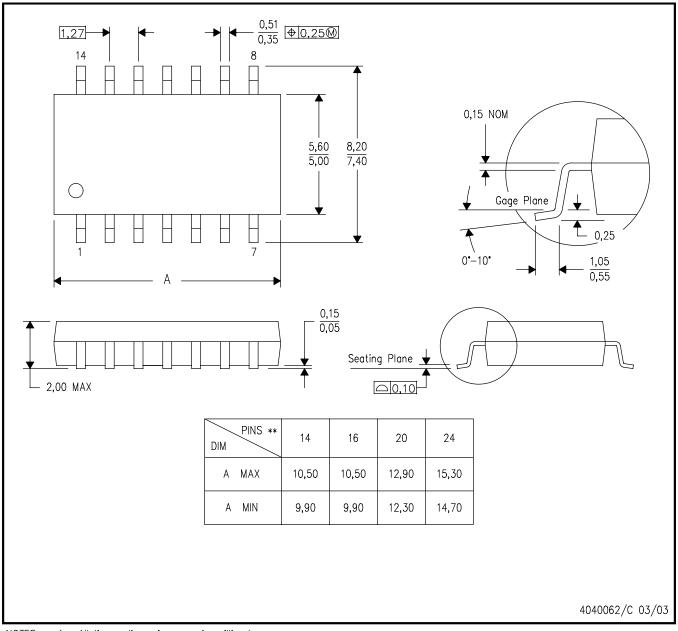
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



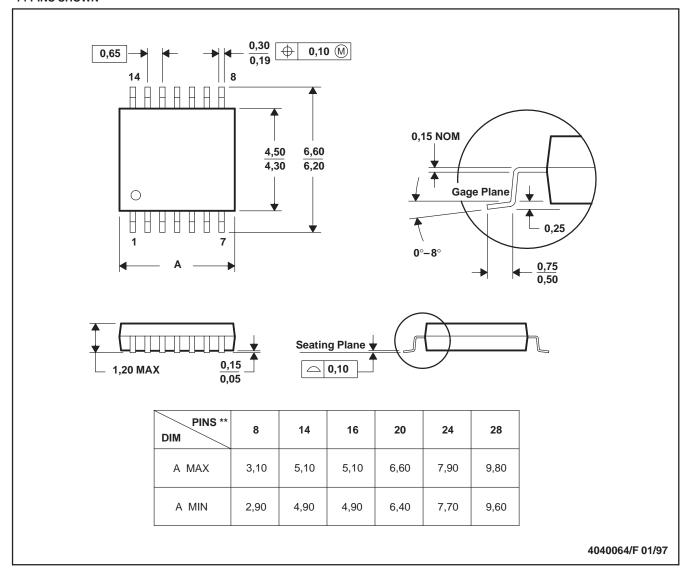
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated