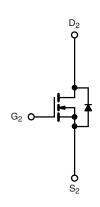

Dual N-Channel 60-V (D-S), 175 °C MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)		
60	0.080 at $V_{GS} = 10 \text{ V}$	± 3.7		
	0.100 at V _{GS} = 4.5 V	± 3.4		

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFETs
- 175 °C Maximum Junction Temperature
- Compliant to RoHS Directive 2002/95/EC



Ordering Information: Si9945AEY-T1-E3 (Lead (Pb)-free)

Si9945AEY-T1-GE3 (Lead (Pb)-free and Halogen-free)

N-Channel MOSFET

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	60	v	
Gate-Source Voltage		V _{GS}	± 20		
Continuous Drain Current /T 175 °C\8	T _A = 25 °C	I_	± 3.7		
Continuous Drain Current (T _J = 175 °C) ^a	T _A = 70 °C	- I _D	± 3.2	^	
Pulsed Drain Current		I _{DM}	25	Α	
Continuous Source Current (Diode Conduction) ^a		I _S	2		
Mariana Barra Birainatian	T _A = 25 °C	P _D	2.4	_ w	
Maximum Power Dissipation ^a	T _A = 70 °C	' b	1.7		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
hungstien to Anahienta	t ≤ 10 s	R _{thJA}		62.5	°C/W	
Junction-to-Ambient ^a	Steady State	' ¹thJA	93			

Notes:

a. Surface Mounted on 1" x 1" FR4 board.

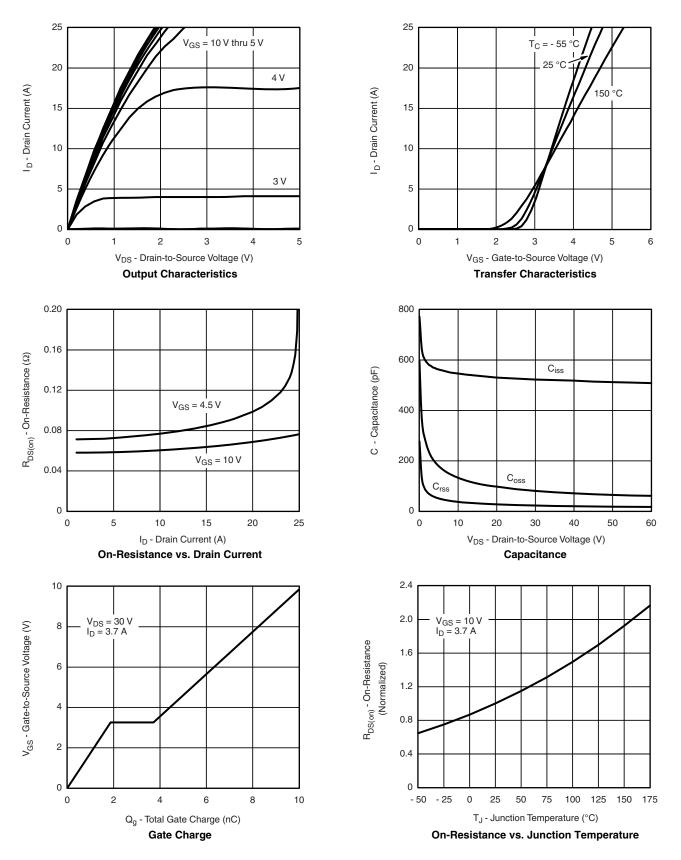
Si9945AEY

Vishay Siliconix

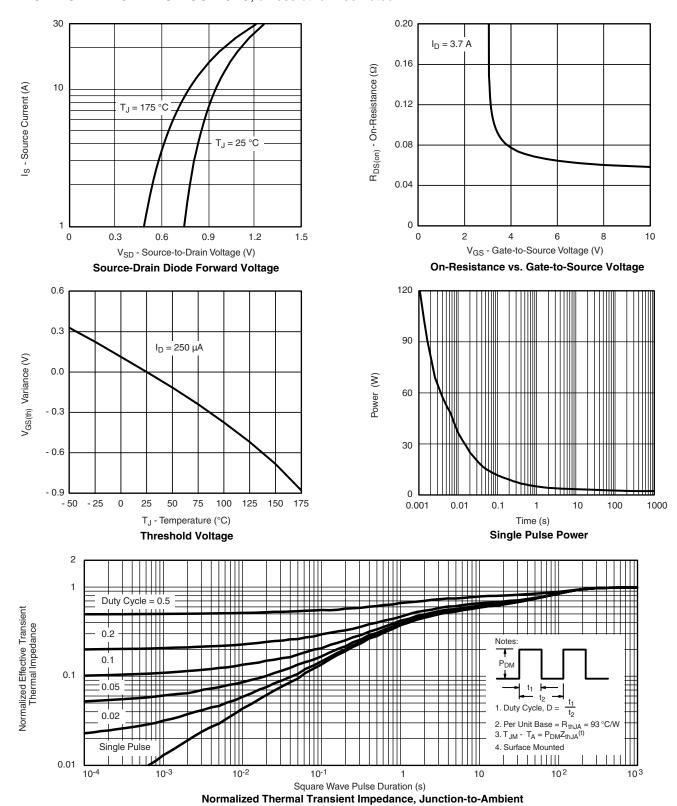
SPECIFICATIONS T _J = 25 °C, unless otherwise noted								
Parameter	Symbol	Test Conditions Min. Typ.		Max.	Unit			
Static								
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.0		3	V		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$			1	μΑ		
					10			
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	20			Α		
Davis Course On Otata Basistana	B ·	V _{GS} = 10 V, I _D = 3.7 A		0.06	0.080	0		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 3.4 \text{ A}$		0.075	0.100	Ω		
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 3.7 A		11		S		
Diode Forward Voltage ^a	V_{SD}	$I_S = 2.0 \text{ A}, V_{GS} = 0 \text{ V}$			1.2	V		
Dynamic ^b								
Total Gate Charge	Q_g			11	20			
Gate-Source Charge	Q_{gs}	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 3.7 \text{ A}$		2		nC		
Gate-Drain Charge	Q_{gd}			2		1		
Turn-On Delay Time	t _{d(on)}			9	20			
Rise Time	t _r	V_{DD} = 30 V, R_L = 30 Ω		10	20			
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ 1 A, V_{GEN} = 10 V, R_g = 6 Ω		21	40	ns		
Fall Time	t _f			8	20			
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = 2.0 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}$		45	80			

Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$

b. Guaranteed by design, not subject to production testing.


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Vishay Siliconix

VISHAY.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg270758.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com