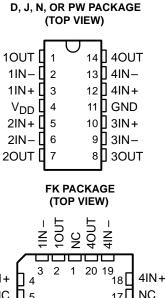
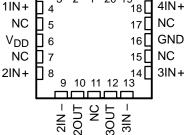
SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

- Trimmed Offset Voltage: TLC279...900 μV Max at 25°C, V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range: 0°C to 70°C ... 3 V to 16 V -40°C to 85°C ... 4 V to 16 V -55°C to 125°C ... 4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Versions)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input Impedance . . . 10¹² Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up Immunity

description

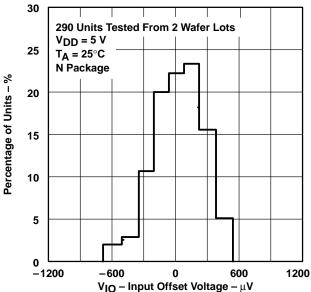
The TLC274 and TLC279 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices.


These devices use Texas Instruments silicongate LinCMOS[™] technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.


The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC274 (10 mV) to the high-precision TLC279 (900 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

LinCMOS is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



NC - No internal connection

DISTRIBUTION OF TLC279 INPUT OFFSET VOLTAGE

Copyright © 2001, Texas Instruments Incorporated

1

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

description (continued)

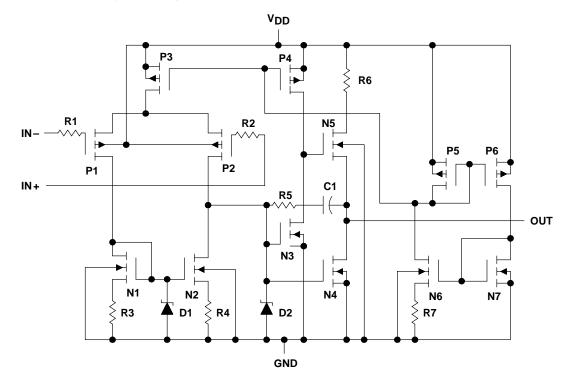
In general, many features associated with bipolar technology are available on LinCMOS[™] operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC274 and TLC279. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC274 and TLC279 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

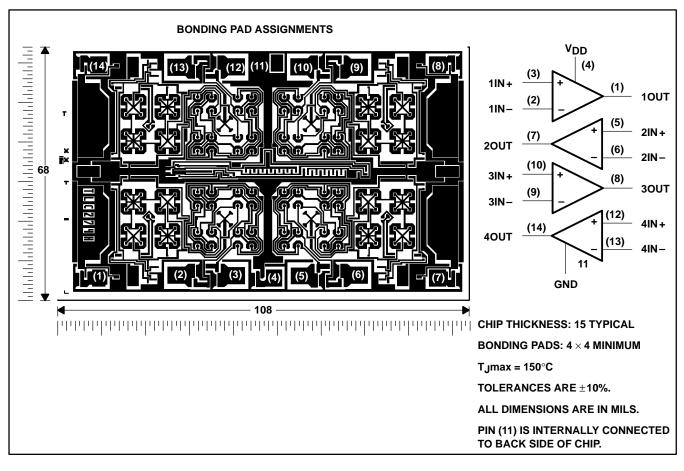
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.


	i	i					
			PA	CKAGED DEV	ICES	-	СНІР
Τ _Α	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	TSSOP (PW)	FORM (Y)
0°C to 70°C	900 μV 2 mV 5 mV 10 mV	TLC279CD TLC274BCD TLC274ACD TLC274CD			TLC279CN TLC274BCN TLC274ACN TLC274CN	 TLC274CPW	— — — TLC274Y
–40°C to 85°C	900 μV 2 mV 5 mV 10 mV	TLC279ID TLC274BID TLC274AID TLC274ID			TLC279IN TLC274BIN TLC274AIN TLC274IN		
–55°C to 125°C	900 μV 10 mV	TLC279MD TLC274MD	TLC279MFK TLC274MFK	TLC279MJ TLC274MJ	TLC279MN TLC274MN	_	

AVAILABLE OPTIONS

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC279CDR).

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001


equivalent schematic (each amplifier)

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TLC274Y chip information

These chips, when properly assembled, display characteristics similar to the TLC274C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} & \pm V_{DD} \\ & -0.3 \text{ V to } V_{DD} \\ & \pm 5 \text{ mA} \\ & \pm 30 \text{ mA} \end{array}$
Total current out of GND	45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) Continuous total dissipation	
Operating free-air temperature, T _A : C suffix I suffix	
Operating free-air temperature, T _A : C suffix	0°C to 70°C -40°C to 85°C -55°C to 125°C -65°C to 150°C 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at the noninverting input with respect to the inverting input.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

		DISSIPATION F	RATING TABLE		
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	—
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
N	1575 mW	12.6 mW/°C	1008 mW	819 mW	—
PW	700 mW	5.6 mW/°C	448 mW	_	—

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, VDD		3	16	4	16	4	16	V
Common-mode input voltage, VIC	$V_{DD} = 5 V$	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, VIC	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	v
Operating free-air temperature, T_A		0	70	-40	85	-55	125	°C

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	т _А †	TLC274 TLC274	C, TLC2 BC, TLC		UNIT
						MIN	TYP	MAX	
		TI 00740	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274C	$R_S = 50 \Omega$,	$R_L = 10 k\Omega$	Full range			12	
		TI 007440	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
	have a first such a sec	TLC274AC	$R_S = 50 \Omega$,	$R_L = 10 k\Omega$	Full range			6.5	
VIO	Input offset voltage	TI 007 (D0	V _O = 1.4 V,	$V_{IC} = 0,$	25°C		340	2000	
		TLC274BC	$R_{S} = 50 \Omega,$	$R_L = 10 k\Omega$	Full range			3000	
		TI 00700	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μV
		TLC279C	$R_S = 50 \Omega$,	$R_L = 10 k\Omega$	Full range			1500	
<u></u>	Average temperature coef	ficient of input			25°C to		1.8		μV/°C
αΛΙΟ	offset voltage				70°C		1.0		μν/-Ο
IIO	Input offset current (see N	ote 4)			25°C		0.1	60	pА
U		010 4)	V _O = 2.5 V,	$V_{10} = 25 V_{10}$	70°C		7	300	PΑ
IB	Input bias current (see No	to 4)	VU = 2.5 V,	VIC - 2.5 V	25°C		0.6	60	pА
ıΒ	input bias current (see No	(e +)			70°C		40	600	PΔ
						-0.2	-0.3		
	0				25°C	to 4	to 4.2		V
VICR	Common-mode input volta (see Note 5)	ige range				-0.2	4.2		
					Full range	-0.2 to			V
					i an iange	3.5			
					25°C	3.2	3.8		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	5	23		
AVD	Large-signal differential vo amplification	ltage	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 10 \ k\Omega$	0°C	4	27		V/mV
	ampinication				70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection r	atio	$V_{IC} = V_{ICR}min$		0°C	60	84		dB
					70°C	60	85		
					25°C	65	95		
ksvr	Supply-voltage rejection ra	atio	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	94		dB
	$(\Delta V_{DD} / \Delta V_{IO})$			-	70°C	60	96		
					25°C		2.7	6.4	
IDD	Supply current (four amplif	iers)	$V_{O} = 2.5 V$,	V _{IC} = 2.5 V,	0°C	1	3.1	7.2	mA
00	· · · · · · · · · · · · · · · · · · ·	,	No load		70°C		2.3	5.2	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	τ _A †	TLC274 TLC274			UNIT
						MIN	TYP	MAX	
		TLC274C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102740	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			12	
		TI 007440	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	mV
\/	lanut offerst velteres	TLC274AC	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			6.5	
VIO	Input offset voltage	TI 0074D0	V _O = 1.4 V,	VIC = 0,	25°C		390	2000	
		TLC274BC	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3000	
		TLC279C	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		1202790	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			1900	
ανιο	Average temperature coe input offset voltage	fficient of			25°C to 70°C		2		μV/°C
					25°C		0.1	60	
10	Input offset current (see N	lote 4)			70°C		7	300	pА
			V _O =.5 V,	V _{IC} = 5 V	25°C		0.7	60	
IВ	Input bias current (see No	ote 4)			70°C		50	600	pА
						-0.2	-0.3		
	Common-mode input volt	age range			25°C	to 9	to 9.2		V
VICR	(see Note 5)				Full range	-0.2 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	7.8	8.5		V
-					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
AVD	Large-signal differential ve amplification	oltage	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	0°C	7.5	42		V/mV
	amplification				70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection	ratio	VIC = VICRmin		0°C	60	88		dB
					70°C	60	88		
					25°C	65	95		
ksvr	Supply-voltage rejection r	atio	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	94		dB
	$(\Delta V_{DD}/\Delta V_{IO})$				70°C	60	96		
					25°C		3.8	8	
IDD	Supply current (four ampl	ifiers)	V _O = 5 V, No load	V _{IC} = 5 V,	0°C		4.5	8.8	mA
	•				70°C		3.2	6.8	

[†] Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	т _А †		4I, TLC2 '4BI, TL(UNIT
						MIN	TYP	MAX	
		TI 00741	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC274I	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			13	
		TI 007441	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	mV
	1	TLC274AI	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			7	
VIO	Input offset voltage		V _O = 1.4 V,	VIC = 0,	25°C		340	2000	
		TLC274BI	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3500	
		TI 00701	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μV
		TLC279I	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			2000	
αΛΙΟ	Average temperature coeffici offset voltage	ent of input			25°C to 85°C		1.8		μV/°C
		0			25°C		0.1	60	
10	Input offset current (see Note	e 4)			85°C		24	1000	pА
			V _O = 2.5 V,	V _{IC} = 2.5 V	25°C		0.6	60	
IВ	Input bias current (see Note	4)			85°C		200	2000	pА
	Common-mode input voltage	range			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	(see Note 5)				Full range	-0.2 to 3.5			V
					25°C	3.2	3.8		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	-40°C	3	3.8		V
					85°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	5	23		
AVD	Large-signal differential volta amplification	ge	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 10 \ k\Omega$	-40°C	3.5	32		V/mV
	amplification				85°C	3.5	19		
					25°C	65	80		
CMRR	Common-mode rejection ration	0	$V_{IC} = V_{ICR}min$		-40°C	60	81		dB
					85°C	60	86		
	.				25°C	65	95		
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$)	$V_{DD} = 5 V$ to 10 V,	V _O = 1.4 V	-40°C	60	92		dB
					85°C	60	96		
					25°C		2.7	6.4	
IDD	Supply current (four amplifier	rs)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,	-40°C		3.8	8.8	mA
					85°C		2.1	4.8	

[†] Full range is -40° C to 85° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	т _А †		4I, TLC2 4BI, TL		UNIT
						MIN	TYP	MAX	
		TLC274I	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102741	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			13	
			V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
N/	log ut offerst up to go	TLC274AI	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			7	
VIO	Input offset voltage		V _O = 1.4 V,	VIC = 0,	25°C		390	2000	
		TLC274BI	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3500	
		TI 00701	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		TLC279I	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			2900	
αVIO	Average temperature coefficient offset voltage	ent of input			25°C to 85°C		2		μV/°C
	-				25°C		0.1	60	
IIO	Input offset current (see Note	4)			85°C		26	1000	pА
			V _O = 5 V,	$V_{IC} = 5 V$	25°C		0.7	60	
IВ	Input bias current (see Note	4)			85°C		220	2000	pА
						-0.2	-0.3		
.,	Common-mode input voltage	range			25°C	to 9	to 9.2		V
VICR	(see Note 5)	Ū			Full range	-0.2 to 8.5			V
					25°C	8	8.5		
∨он	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	-40°C	7.8	8.5		V
••••				_	85°C	7.8	8.5		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage	ge	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	-40°C	7	47		V/mV
	amplification				85°C	7	31		
					25°C	65	85		
CMRR	Common-mode rejection ratio)	$V_{IC} = V_{ICR}min$		-40°C	60	87		dB
			-		85°C	60	88		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	-40°C	60	92		dB
	$(\Delta V_{DD}/\Delta V_{IO})$			-	85°C	60	96		
					25°C		3.8	8	
IDD	Supply current (four amplifier	s)	$V_{O} = 5 V$, No load	V _{IC} = 5 V,	-40°C		5.5	10	mA
-	· · ·		INO IOAU		85°C		2.9	6.4	

[†] Full range is -40° C to 85° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PADAMETED		TEST CON		- +	TLC27	4M, TLC	279M	
	PARAMETER		TEST CON	DITIONS	τ _A †	MIN	TYP	MAX	UNIT
		TLC274M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
Vie	Input offect veltage	1 LC27 410	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			12	mv
VIO	Input offset voltage	TLC279M	V _O = 1.4 V,	V _{IC} = 0,	25°C		320	900	μV
		1627910	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3750	μv
ανιο	Average temperature coefficie offset voltage	ent of input			25°C to 125°C		2.1		μV/°C
lio.	Input offect current (coo Noto	4)			25°C		0.1	60	pА
IIO	Input offset current (see Note	4)	V _O = 2.5 V,	VIC = 2.5 V	125°C		1.4	15	nA
	Input bias current (see Note 4)	$V_{0} = 2.5 V,$	$V_{1C} = 2.5 V_{1C}$	25°C		0.6	60	pА
IВ	input bias current (see Note 4	·)			125°C		9	35	nA
	Common-mode input voltage	range			25°C	0 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	Ū			Full range	0 to 3.5			V
				:	25°C	3.2	3.8		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	−55°C	3	3.8		V
					125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage amplification	je	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 10 \ k\Omega$	−55°C	3.5	35		V/mV
	ampinoation				125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio	1	$V_{IC} = V_{ICR}min$		−55°C	60	81		dB
					125°C	60	84		
	O market and the second section of the				25°C	65	95		
^k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		V_{DD} = 5 V to 10 V,	V _O = 1.4 V	−55°C	60	90		dB
	())0/				125°C	60	97		
			V _O = 2.5 V,	V _{IC} = 2.5 V,	25°C		2.7	6.4	
IDD	Supply current (four amplifiers	3)	$V_{O} = 2.5 V$, No load	vIC = 2.5 v,	−55°C		4	10	mA
					125°C		1.9	4.4	

[†] Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless) otherwise noted)

			TEST CON		+ +	TLC27	4M, TLC	279M	111117
	PARAMETER		TEST CON	DITIONS	ΤA [†]	MIN	TYP	MAX	UNIT
		TLC274M	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	mV
VIO	Input offset voltage	1027410	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			12	IIIV
۷Ю	niput onset voltage	TLC279M	V _O = 1.4 V,	V _{IC} = 0,	25°C		370	1200	μV
		1027910	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			4300	μv
αVIO	Average temperature coefficie offset voltage	ent of input			25°C to 125°C		2.2		μV/°C
li o	Input offset current (see Note	4)			25°C		0.1	60	pА
liO	input onset current (see Note	4)	V _O = 5 V,	VIC = 5 V	125°C		1.8	15	nA
lun.	Input bias current (see Note 4	`	VO = 5 V,	AIC = 2 A	25°C		0.7	60	pА
IВ	input bias current (see Note 4)			125°C		10	35	nA
N/	Common-mode input voltage	range			25°C	0 to 9	-0.3 to 9.2		V
VICR	(see Note 5)	-			Full range	0 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage amplification	le	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	−55°C	7	50		V/mV
	ampinoation				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		−55°C	60	87		dB
					125°C	60	86		
	Owner have a literation of the				25°C	65	95		
^k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 V$ to 10 V,	V _O = 1.4 V	−55°C	60	90		dB
	יטויבי <u>ט</u> עי=.				125°C	60	97		
					25°C		3.8	8	
IDD	Supply current (four amplifiers	5)	$V_{O} = 5 V$, No load	V _{IC} = 5 V,	−55°C		6.0	12	mA
					125°C		2.5	5.6	

[†] Full range is -55° C to 125° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, V_{DD} = 5 V

	PARAMETER	TEST CC	ONDITIONS	тд		C, TLC2 .C274AC IBC, TLC) ,	UNIT
					MIN	TYP	MAX	
				25°C		3.6		
			VIPP = 1 V	0°C		4		
SR	Clow rate at unity gain	$R_L = 10 \Omega$,		70°C		3		1////
SK	Slew rate at unity gain	C _L = 20 _P F, See Figure 1		25°C		2.9		V/μs
		<u>j</u>	V _{IPP} = 2.5 V	0°C		3.1		
				70°C		2.5		
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√Hz
				25°C		320		
Вом	Maximum output-swing bandwidth	$V_{O} = V_{OH},$ R _L = 10 k Ω ,	C _L = 20 _P F, See Figure 1	0°C		340		kHz
		NL = 10 K32,	Occ riguie i	70°C		260		
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 _P F,	0°C		2		MHz
		See Figure 5		70°C		1.3		
			(D	25°C		46°		
φm	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ ,	0°C		47°		
		0 ² - 20 pr,		70°C		44°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	тд	TLC274C, TLC2 TLC274AC TLC274BC, TLC	;,	UNIT
					MIN TYP	MAX	
				25°C	5.3		
			$V_{IPP} = 1 V$	0°C	5.9		
SR	Slew rate at unity gain	$R_{L} = 10 \Omega$,		70°C	4.3		V/µs
	Siew rate at unity gain	C _L = 20 _P F, See Figure 1		25°C	4.6		v/µs
		<u>-</u>	VIPP = 5.5 V	0°C	5.1		
				70°C	3.8		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C	25		nV/√Hz
				25°C	200		
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , R _L = 10 kΩ,	C _L = 20 _P F, See Figure 1	0°C	220		kHz
		NL = 10 K22,	Occ rigare r	70°C	140		
				25°C	2.2		
B ₁	Unity-gain bandwidth	VI = 10 mV, See Figure 3	C _L = 20 _P F,	0°C	2.5		MHz
		occ rigare o		70°C	1.8		
		10	()	25°C	49°		
фт	m Phase margin	V _I = 10 mV, C _L = 20 _P F,	f = B ₁ , See Figure 3	0°C	50°		
				70°C	46°		

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

	PARAMETER	TEST C	TEST CONDITIONS			4I, TLC2 4BI, TL(UNIT
						TYP	MAX	
				25°C		3.6		
			V _{IPP} = 1 V	-40°C		4.5		
SR	Slew rate at unity gain	$R_{L} = 10 k\Omega$,		85°C		2.8		V/µs
	Siew rate at unity gain	C _L = 20 _P F, See Figure 1		25°C		2.9		v/µS
		5	VIPP = 2.5 V	-40°C		3.5		
				85°C		2.3		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
				25°C		320		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH},$ $R_I = 10 \text{ k}\Omega,$	C _L = 20 _P F, See Figure 1	-40°C		380		kHz
			ecc rigare r	85°C		250		
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 _P F,	-40°C		2.6		MHz
		occ riguie o		85°C		1.2		
		10 m)(<u> </u>	25°C		46°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	-40°C		49°		
			gui 0 0	85°C		43°		

operating characteristics at specified free-air temperature, V_{DD} = 5 V

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	ONDITIONS	ТА	TLC274I, TLC TLC274BI, TL		UNIT
					MIN TYP	MAX	
				25°C	5.3		
			V _{IPP} = 1 V	-40°C	6.7		
SR	Slow rote at unity gain	$R_L = 10 \Omega$,		85°C	4		1////
	Slew rate at unity gain	C _L = 20 _P F, See Figure 1		25°C	4.6		V/μs
		J	VIPP = 5.5 V	-40°C	5.8		
				85°C	3.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C	25		nV/√Hz
				25°C	200		
Вом	Maximum output-swing bandwidth	$V_{O} = V_{OH},$ $R_{L} = 10 \text{ k}\Omega,$	C _L = 20 _P F, See Figure 1	-40°C	260		kHz
		KL = 10 K22,	Gee rigure r	85°C	130		
				25°C	2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 _P F,	−40°C	3.1		MHz
		See Figure 5		85°C	1.7		
			()	25°C	49°		
φ _m	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	/ _I = 10 mV, f = B ₁ , C _L = 20 pF, See Figure 3	-40°C	52°		
			200 i iguio 0	85°C	46°		

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	DADAMETED	TEST CO	NDITIONS	.	TLC274	IM, TLC	279M	LINUT
	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		3.6		
			VIPP = 1 V	−55°C		4.7		
SR	Slow rote of unity goin	$R_L = 10 k\Omega$,		125°C		2.3		\//ue
SK	Slew rate at unity gain	C _L = 20 _P F, See Figure 1		25°C		2.9		V/μs
		U	V _{IPP} = 2.5 V	−55°C		3.7		
				125°C		2		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
				25°C		320		
BOM	Maximum output-swing bandwidth	$V_{O} = V_{OH},$ $R_{I} = 10 \text{ k}\Omega,$	C _L = 20 _P F, See Figure 1	−55°C		400		kHz
		NC = 10 K32,	Occ riguie i	125°C		230		
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 _P F,	−55°C		2.9		MHz
		See l'igure 5		125°C		1.1		
		10	<i>(</i>)	25°C		46°		
^ф т	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 3	−55°C		49°		
			eseguio o	125°C		41°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

		T	TLC274	M, TLC	279M	LINUT		
	PARAMETER	TEST CO	ONDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		5.3		
			VIPP = 1 V	VIPP = 1 V	−55°C	7.1		
SR	Slow rote at unity gain	$R_L = 10 \Omega$,		125°C		3.1		1////
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/μs
		<u>.</u>	V _{IPP} = 5.5 V	−55°C		6.1		
				125°C		2.7		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C	25			nV/√Hz
	Maximum output-swing bandwidth	V _O = V _{OH} , R _I = 10 kΩ,		25°C		200		
Вом			CL = 20 pF, See Figure 1	−55°C		280		kHz
		N_ = 10 K32,	Occ rigure r	125°C		110		
				25°C		2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 _P F,	−55°C		3.4		MHz
		Occ rigure o		125°C		1.6		
		10	()	25°C		49°		
φm	Phase margin	V _I = 10 mV, C _L = 20 pF,		−55°C		52°		
			eee . guio o	125°C		44°		

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

electrical characteristics, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST CON		Т	LC274Y		
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 1.4 V,$ R _S = 50 Ω ,			1.1	10	mV
IIO	Input offset current (see Note 4)		$V_{12} = 25 V_{12}$		0.1		pА
I _{IB}	Input bias current (see Note 4)	$v_{\rm O} = 2.5 v_{\rm o}$	$V_{O} = 2.5 V,$ $V_{IC} = 2.5 V$		0.6		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		V
VOH	High-level output voltage	V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$		0	50	mV
AVD	Large-signal differential voltage amplification	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 10 \ k\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	80		dB
k SVR	Supply-voltage rejection ratio ($\Delta V_{DD} / \Delta V_{IO}$)	V _{DD} = 5 V to 10 V,	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (four amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		2.7	6.4	mA

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CON	DITIONE	т	LC274Y		
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 1.4 V,$ R _S = 50 Ω ,	V _{IC} = 0, R _L = 10 kΩ		1.1	10	mV
li0	Input offset current (see Note 4)	$V_{0} = 5 V_{1}$	VIC = 5 V		0.1		pА
I _{IB}	Input bias current (see Note 4)	$v_{\rm O} = 5 v$,	AIC = 2 A		0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
∨он	High-level output voltage	V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	8	8.5		V
VOL	Low-level output voltage	V _{ID} = -100 mV,	IOT = 0		0	50	mV
A _{VD}	Large-signal differential voltage amplification	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \text{ k}\Omega$	10	36		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	85		dB
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	65	95		dB
IDD	Supply current (four amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		3.8	8	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

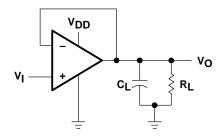
SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

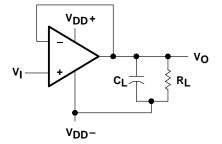
operating characteristics, $V_{DD} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	-	EST CONDITIO		Т	LC274Y		UNIT
	FARAMETER			MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain	$R_L = 10 k\Omega$,	C _L = 20 _P F,	$V_{IPP} = 1 V$		3.6		V/µs
SK	Siew rate at unity gain	See Figure 1		VIPP = 2.5 V	2.9			v/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2		25		nV/√Hz
^В ОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 _P F,	R _L = 10 kΩ,		320		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 _P F,	See Figure 3		1.7		MHz
^ф т	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		46°		

operating characteristics, V_{DD} = 10 V, T_A = 25°C

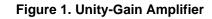
	PARAMETER	-	TEST CONDITIONS					UNIT
	FARAMETER			MIN	TYP	MAX		
SR	Slew rate at unity gain	R _L = 10 kΩ,	C _L = 20 _P F,	$V_{IPP} = 1 V$		5.3		V/µs
SR Slew fate at unity gain		See Figure 1		VIPP = 5.5 V	4.6			ν/μ5
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2		25		nV/√Hz
B _{OM}	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 _P F,	R _L = 10 kΩ,		200		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 _P F,	See Figure 3		2.2		MHz
^ф т	Phase margin	V _I = 10 mV, See Figure 3	$f = B_1,$	C _L = 20 _P F,		49°		

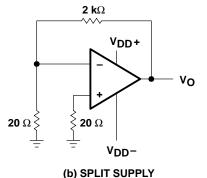


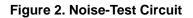

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits


Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.




(b) SPLIT SUPPLY

(a) SINGLE SUPPLY

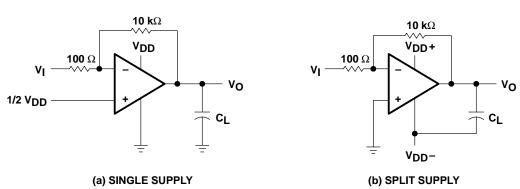


Figure 3. Gain-of-100 Inverting Amplifier

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC274 and TLC279 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

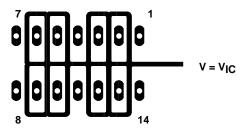


Figure 4. Isolation Metal Around Device Inputs (J and N packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

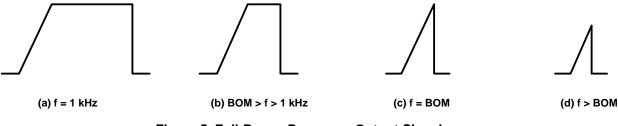


Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

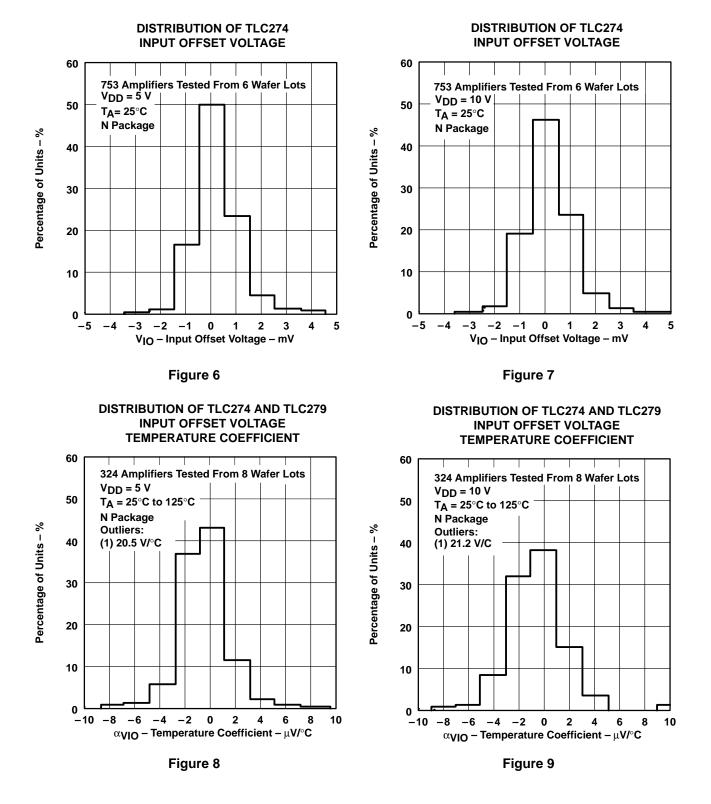
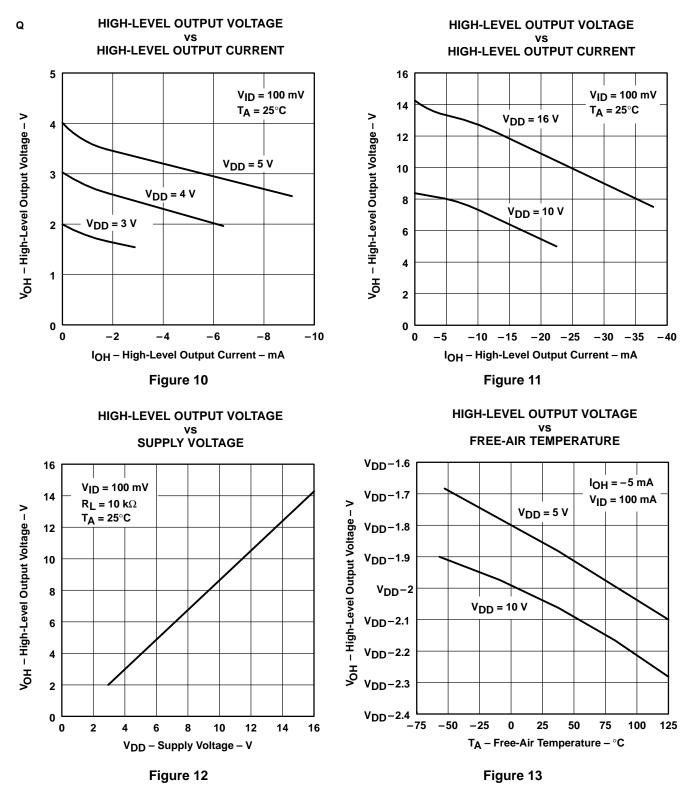
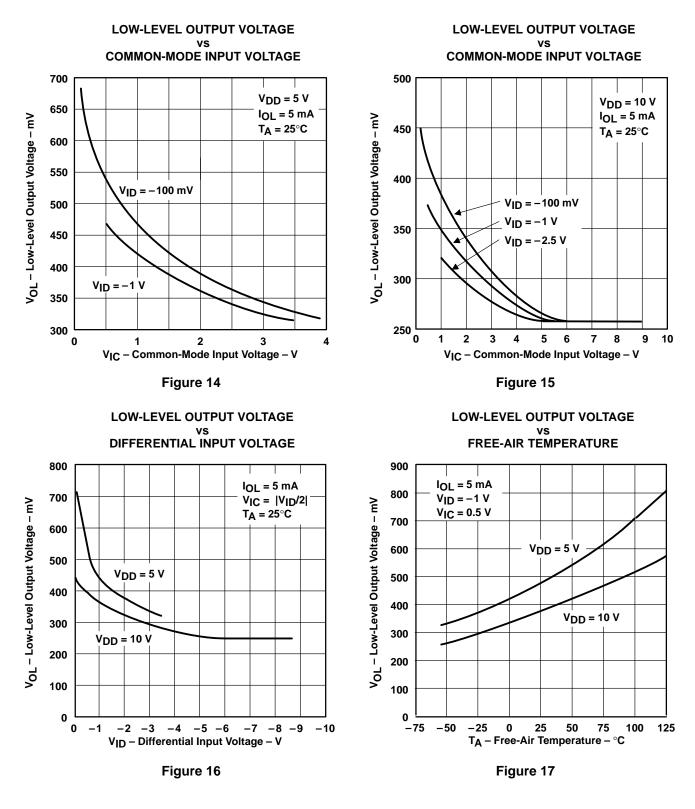

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
VOH	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
IIO	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
IDD	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	29
В ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
^φ m	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
Vn	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

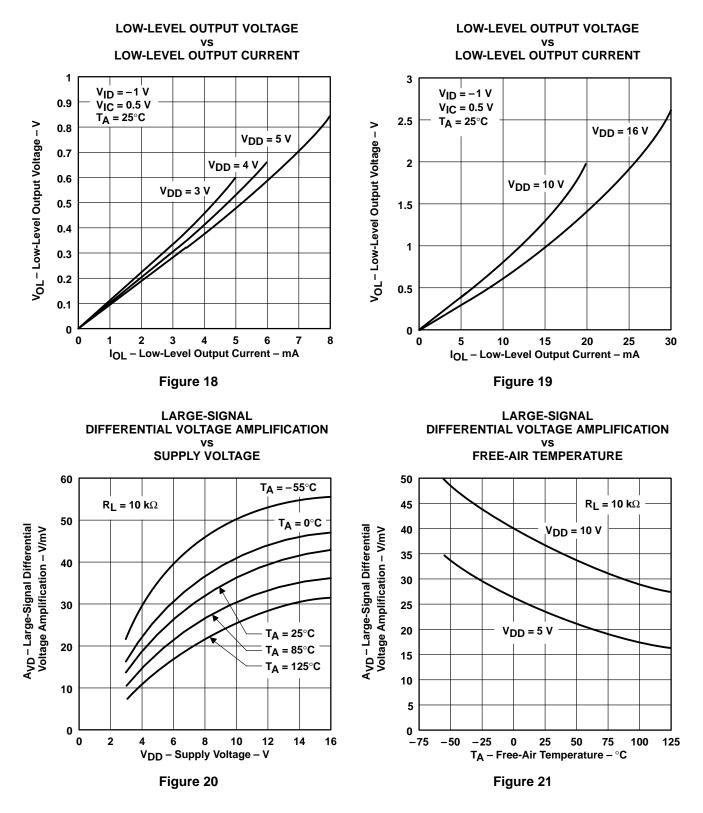
Table of Graphs


SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS


SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS[†]


SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS[†]

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS[†]

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT **COMMON-MODE** vs INPUT VOLTAGE POSITIVE LIMIT FREE-AIR TEMPERATURE vs SUPPLY VOLTAGE 10000 IIB and IIO – Input Bias and Offset Currents – pA $V_{DD} = 10 V_{=}^{2}$ 16 V_{IC} = 5 V T_A = 25°C See Note A VIC – Common-Mode Input Voltage – V 14 1000 IΒ 12 100 10 lю 8 10 6 1 4 2 0.1 25 125 65 105 45 85 0 2 T_A – Free-Air Temperature – °C 0 4 6 8 10 12 14 16 V_{DD} – Supply Voltage – V NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically. Figure 23 Figure 22 SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 10 8 $V_O = V_{DD}/2$ $V_O = V_{DD}/2$ 9 7 No Load No Load T_A = −55°C 8 I_{DD} – Supply Current – mA 6 I_{DD} – Supply Current – mA 7 5 T_A = 0°C 6 T_A = 25°C $V_{DD} = 10 V$ 5 4 4 3 3 $V_{DD} = 5 V$ 2 2 T_A = 70°C 1 1 T_A = 125°C 0 0 -75 -50 -25 25 50 75 100 125 0 2 6 8 10 16 0 4 12 14 V_{DD} – Supply Voltage – V T_A – Free-Air Temperature – °C

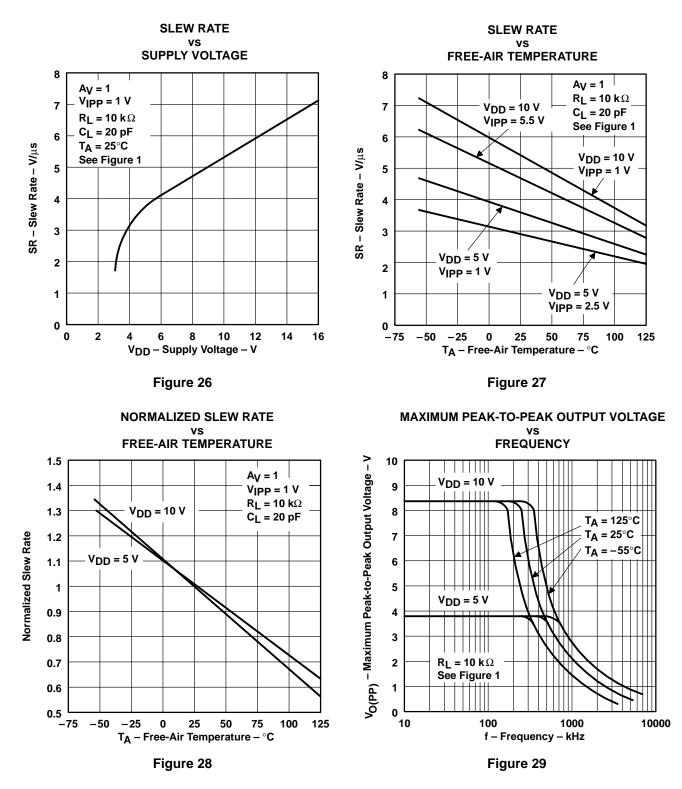
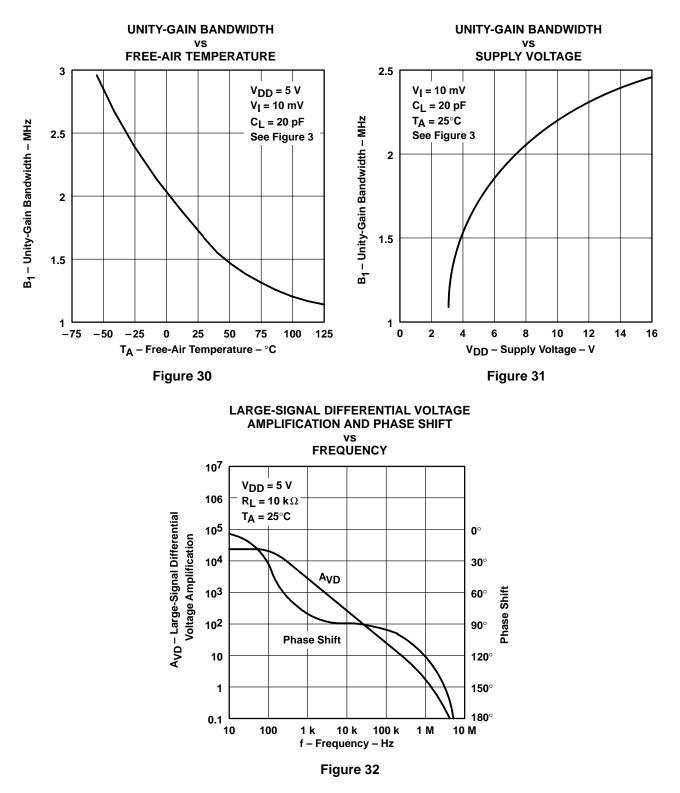
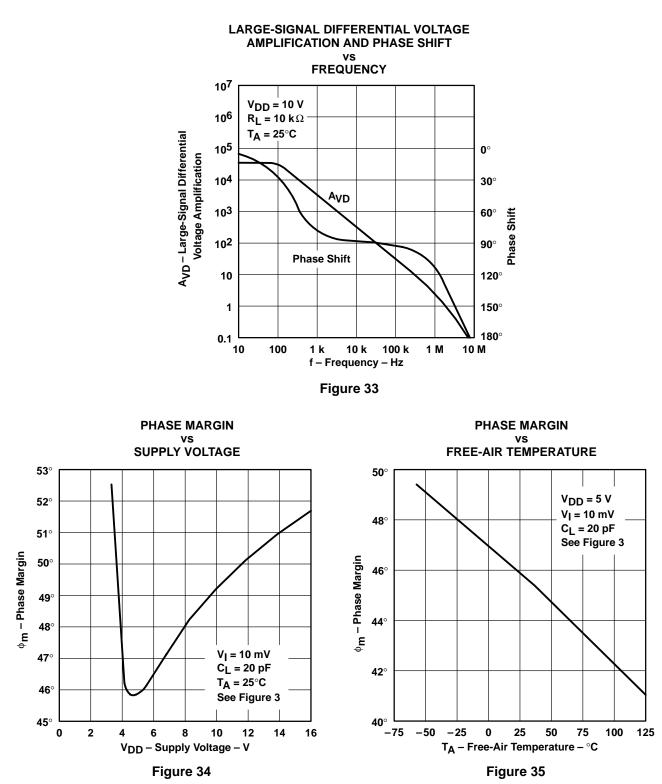

TYPICAL CHARACTERISTICS[†]

Figure 24

Figure 25

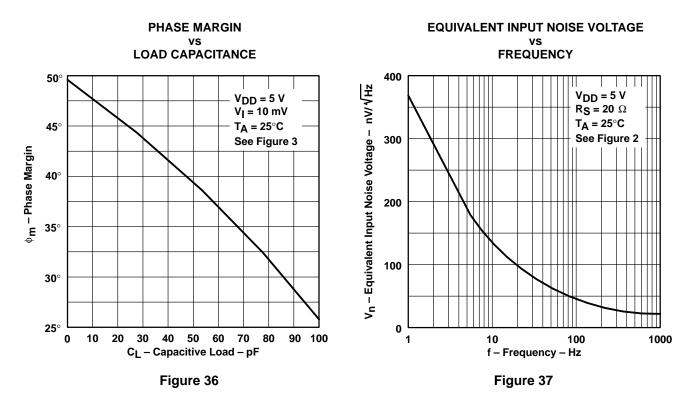

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS[†]


SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS[†]

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001



TYPICAL CHARACTERISTICS[†]

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

single-supply operation

While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC274 and TLC279 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require R_C decoupling.

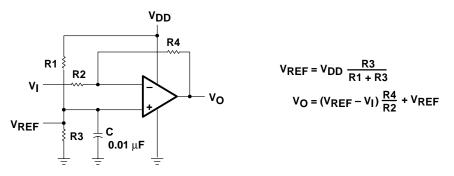
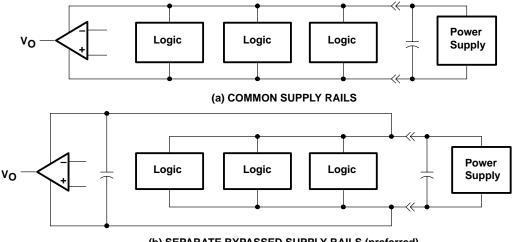



Figure 38. Inverting Amplifier With Voltage Reference

(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

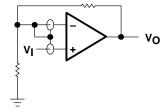
Figure 39. Common Versus Separate Supply Rails

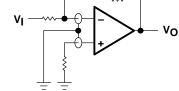
SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

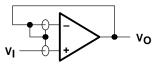
APPLICATION INFORMATION

input characteristics

The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_A = 25^{\circ}$ C and at $V_{DD} - 1.5$ V at all other temperatures.


The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.


Because of the extremely high input impedance and resulting low bias current requirements, the TLC274 and TLC279 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).


Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

(a) NONINVERTING AMPLIFIER

(b) INVERTING AMPLIFIER

(c) UNITY-GAIN AMPLIFIER

Figure 40. Guard-Ring Schemes

output characteristics

The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

output characteristics (continued)

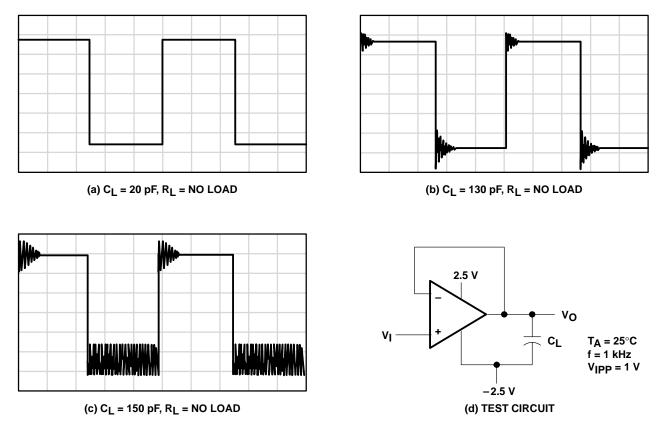
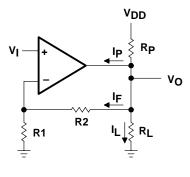


Figure 41. Effect of Capacitive Loads and Test Circuit


Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (R_p) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60Ω and 180Ω , depending on how hard the op amp input is driven. With very low values of R_P, a voltage offset from 0 V at the output occurs. Second, pullup resistor R_P acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

output characteristics (continued)

Ip = Pullup current required by the operational amplifier (typically 500 μ A)

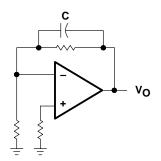


Figure 43. Compensation for Input Capacitance

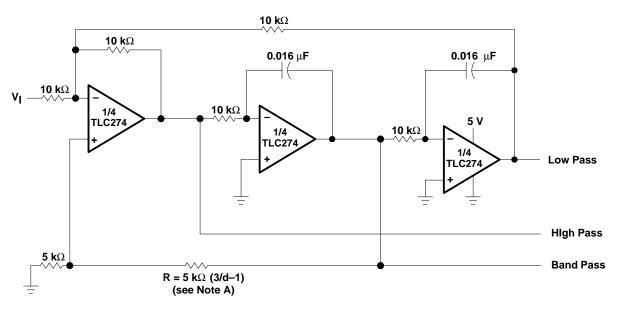
Figure 42. Resistive Pullup to Increase VOH

feedback

Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection

The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode.


latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274 and TLC279 inputs and outputs were designed to withstand –100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

Figure 44. State-Variable Filter

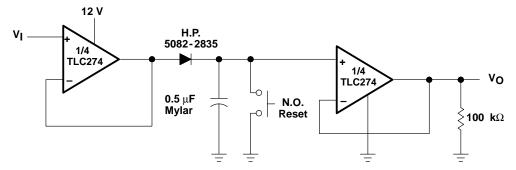
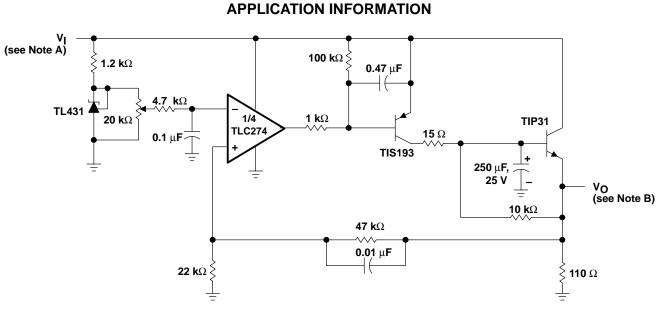
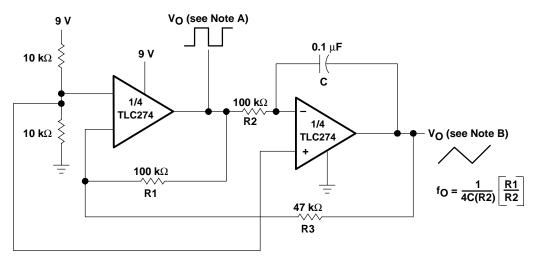



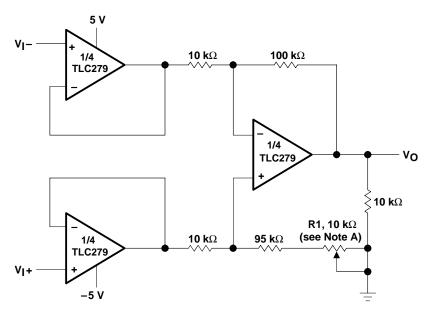
Figure 45. Positive-Peak Detector



SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

NOTES: B. $V_I = 3.5 V \text{ to } 15 V$ C. $V_O = 2 V$, 0 to 1 A

Figure 46. Logic-Array Power Supply


NOTES: A. V_{O(PP)} = 8 V B. V_{O(PP)} = 4 V

SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

APPLICATION INFORMATION

NOTE C: CMRR adjustment must be noninductive.

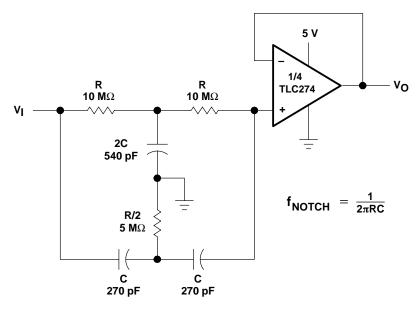
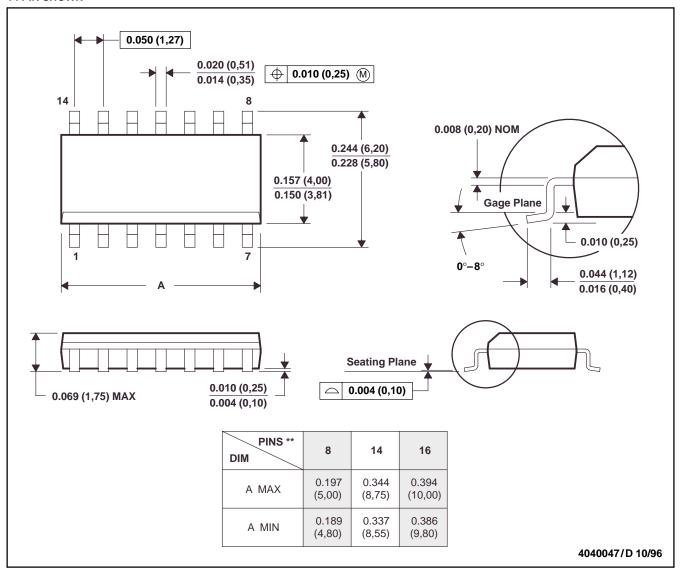


Figure 49. Single-Supply Twin-T Notch Filter



SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

MECHANICAL INFORMATION

PLASTIC SMALL-OUTLINE PACKAGE

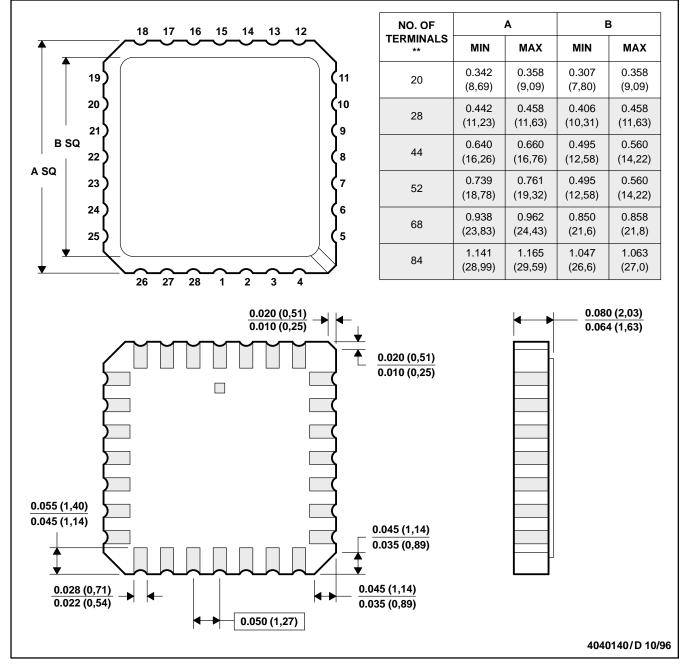
D (R-PDSO-G**) 14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012


SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

MECHANICAL INFORMATION

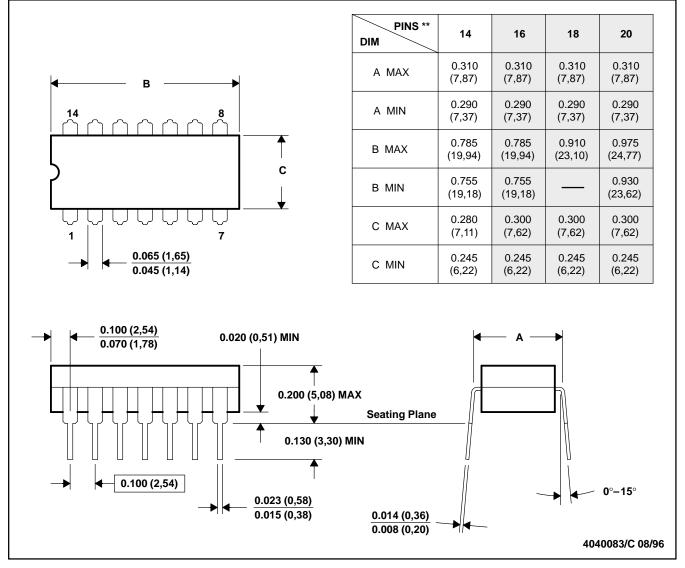
FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004



SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

MECHANICAL INFORMATION

CERAMIC DUAL-IN-LINE PACKAGE

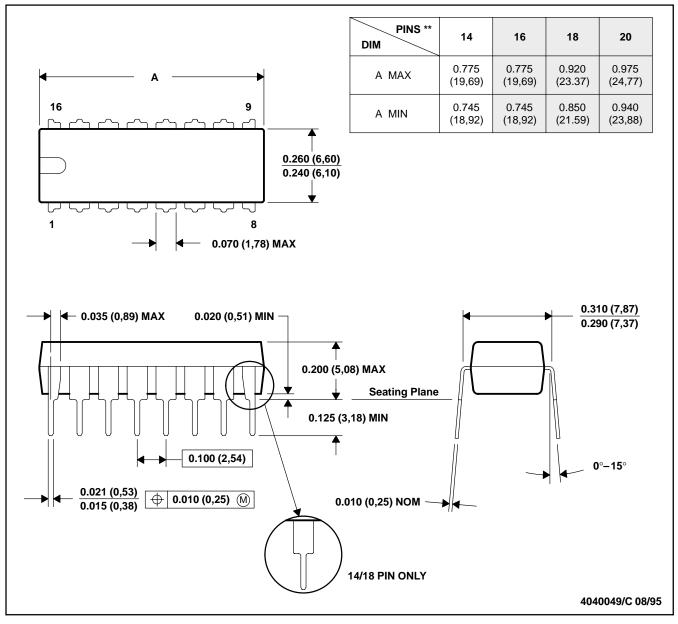
J (R-GDIP-T**) 14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.

- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, and GDIP1-T20


SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

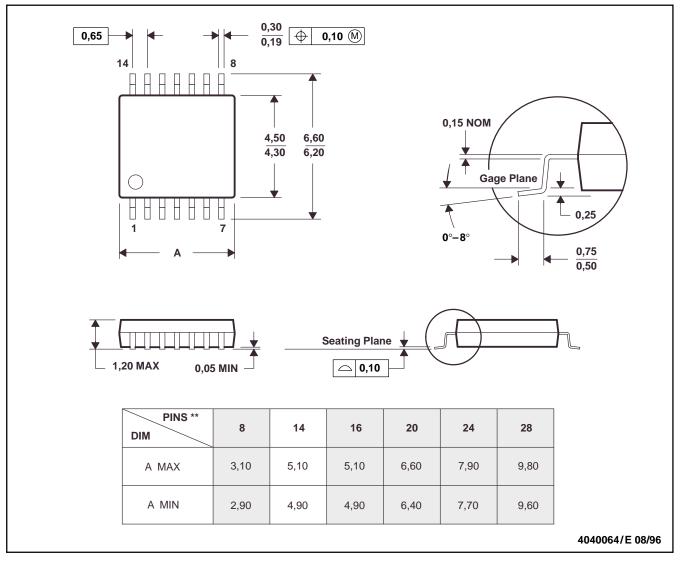
MECHANICAL INFORMATION

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PIN SHOWN

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)



SLOS092D - SEPTEMBER 1987 - REVISED MARCH 2001

MECHANICAL INFORMATION

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

TEXAS INSTRUMENTS www.ti.com

22-Feb-2005

PACKAGING INFORMATION

TLC274ACD ACTIVE SOIC D 14 50 PP-Free CU NIPDAL Level-2480C-1YEAR/ Level-1220-UNLIM TLC274ACDR ACTIVE SOIC D 14 2500 PP-Free CU NIPDAL Level-2480C-1YEAR/ Level-1220-UNLIM TLC274ACDR ACTIVE PDIP N 14 25 PD-Free CU NIPDAU Level-260C-1YEAR/ (RoHS) TLC274AIDR ACTIVE SOIC D 14 25 PD-Free CU NIPDAU Level-2260C-1YEAR/ (RoHS) TLC274AIDR ACTIVE SOIC D 14 250 PD-Free CU NIPDAU Level-2260C-1YEAR/ (RoHS) TLC274AIDR ACTIVE SOIC D 14 250 PD-Free CU NIPDAU Level-2260C-1YEAR/ (RoHS) TLC274BCDR ACTIVE SOIC D 14 250 PD-Free CU NIPDAU Level-2260C-1YEAR/ (RoHS) TLC274BCN ACTIVE SOIC D 14 250 PD-Free CU NIPDAU Level-2260C-1YEAR/ (RoHS) TLC274BCN ACTIVE SOIC D 14 250 None CU NI	Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
(RoHS) Level + 220C-UNLIM TLC274ACN ACTIVE PDIP N 14 25 Pb-Free CU NIPD Level-NC-NC-NC TLC274AID ACTIVE SOIC D 14 50 Pb-Free CU NIPD Level-2200C-IYEAR/ TLC274AIDR ACTIVE SOIC D 14 50 Pb-Free CU NIPD Level-2200C-IYEAR/ TLC274AIN ACTIVE SOIC D 14 250 Pb-Free CU NIPD Level-2200C-IVEAR/ TLC274BCD ACTIVE SOIC D 14 250 Pb-Free CU NIPD Level-2200C-IVEAR/ TLC274BCDR ACTIVE SOIC D 14 250 Pb-Free CU NIPD Level-2200C-IVEAR/ TLC274BCN ACTIVE SOIC D 14 200 Pb-Free CU NIPD Level-2200C-IVEAR/ TLC274BCNSR ACTIVE SOIC D 14 200 Pb-Free CU NIPD Level-2200C-IVEAR/ TLC274BID ACTIVE SOIC D 14 200 None CU NIPD Level-2200C-IVEA	TLC274ACD	ACTIVE	SOIC	D	14	50			
(RoHS) TLC274AID ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-1-220C-UNLIM TLC274AIDR ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAU Level-1-220C-UNLIM TLC274AIDR ACTIVE PDIP N 14 250 Pb-Free (CU NIPDAU (RoHS) Level-2-260C-1YEAR/ (RoHS) TLC274BCD ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ (RoHS) Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274BCDR ACTIVE SOIC D 14 250 Pb-Free (CU NIPDAU Level-1-220C-UNLIM TLC274BCNR ACTIVE SOIC D 14 250 None CU NIPDAU Level-1-220C-UNLIM TLC274BCNR ACTIVE SOIC D 14 50 None CU NIPDAU Level-1-220C-UNLIM TLC274BID ACTIVE SOIC D 14 50 None CU NIPDAU Level-1-220C-UNLIM TLC274BID ACTIVE SOIC D 14 50 <td>TLC274ACDR</td> <td>ACTIVE</td> <td>SOIC</td> <td>D</td> <td>14</td> <td>2500</td> <td></td> <td></td> <td></td>	TLC274ACDR	ACTIVE	SOIC	D	14	2500			
(RoHS) Level-1-220C-UNLIM TLC274AIDR ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAL Level-1-220C-UNLIM TLC274AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAL Level-1-220C-UNLIM TLC274BCD ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-1-220C-UNLIM TLC274BCDR ACTIVE SOIC D 14 250 Pb-Free (CU NIPDAU Level-1-220C-UNLIM TLC274BCN ACTIVE SOIC D 14 2500 Pb-Free CU NIPDAU Level-2-280C-1YEAR/ (RoHS) TLC274BCNS ACTIVE SOIC D 14 250 None CU NIPDAU Level-2-280C-1YEAR/ (RoHS) TLC274BIDR ACTIVE SOIC D 14 250 None CU NIPDAU Level-2-280C-1YEAR/ (RoHS) TLC274BIDR ACTIVE SOIC D 14 250 None CU NIPDAU Level-2-280C-1YEAR/ (RoHS) <td>TLC274ACN</td> <td>ACTIVE</td> <td>PDIP</td> <td>Ν</td> <td>14</td> <td>25</td> <td></td> <td>CU NIPD</td> <td>Level-NC-NC-NC</td>	TLC274ACN	ACTIVE	PDIP	Ν	14	25		CU NIPD	Level-NC-NC-NC
(RoHS) Level-1-220C-UNLIM TLC274AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPD Level-N20C-NC-NC TLC274BCD ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-1-220C-UNLIM TLC274BCDR ACTIVE SOIC D 14 250 Pb-Free (RoHS) CU NIPDAU Level-260C-1YEAR/ Level-1-220C-UNLIM TLC274BCN ACTIVE PDIP N 14 25 Pb-Free CU NIPDAU Level-260C-1YEAR/ (RoHS) TLC274BCNSR ACTIVE SOIC D 14 250 Pb-Free CU NIPDAU Level-220C-UNLIM TLC274BID ACTIVE SOIC D 14 250 None CU NIPDAU Level-220C-UNLIM TLC274BID ACTIVE SOIC D 14 25 Pb-Free CU NIPDAU Level-220C-UNLIM TLC274DD ACTIVE SOIC D 14 25 Pb-Free CU NIPDAU Level-220C-UNLIM TLC274CDB	TLC274AID	ACTIVE	SOIC	D	14	50			
(RoHS) (RoHS) TLC274BCD ACTIVE SOIC D 14 50 Pb-Free (RoHS) CU NIPDAU Level-2:260C-1YEAR/ Level-1:220C-UNLIM TLC274BCDR ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAU Level-2:260C-1YEAR/ Level-1:220C-UNLIM TLC274BCN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU Level-2:260C-1YEAR/ Level-1:220C-UNLIM TLC274BCN ACTIVE SOIC D 14 250 None CU NIPDAU Level-1:220C-UNLIM TLC274BID ACTIVE SOIC D 14 250 None CU NIPDAU Level-1:220C-UNLIM TLC274BID ACTIVE SOIC D 14 250 None CU NIPDAU Level-1:220C-UNLIM TLC274CD ACTIVE SOIC D 14 50 Pb-Free CU NIPDAU Level-2:260C-1YEAR/ (RoHS) TLC274CDB ACTIVE SOIC D 14 80 Pb-Free CU NIPDAU Level-2:260C-1	TLC274AIDR	ACTIVE	SOIC	D	14	2500			
(R0HS) Level-1220C-UNLIM TLC274BCDR ACTIVE SOIC D 14 2500 Pb-Free CU NIPDAU Level-2260C-1YEAR/ (R0HS) TLC274BCN ACTIVE PDIP N 14 250 Pb-Free CU NIPDAU Level-2260C-1YEAR/ (R0HS) TLC274BCNSR ACTIVE SO NS 14 2000 Pb-Free (R0HS) CU NIPDAU Level-2260C-1YEAR/ Level-1220C-UNLIM TLC274BIDR ACTIVE SOIC D 14 50 None CU NIPDAU Level-1220C-UNLIM TLC274BIDR ACTIVE SOIC D 14 250 None CU NIPDAU Level-1220C-UNLIM TLC274DD ACTIVE SOIC D 14 250 Pb-Free CU NIPDAU Level-2260C-1YEAR/ (R0HS) TLC274CDB ACTIVE SOIC D 14 80 Pb-Free CU NIPDAU Level-2260C-1YEAR/ (R0HS) TLC274CDBR ACTIVE SSOP DB 14 2000 Pb-Free CU NIPDAU Level-2260C-1YEAR/ (R0HS) <td>TLC274AIN</td> <td>ACTIVE</td> <td>PDIP</td> <td>Ν</td> <td>14</td> <td>25</td> <td></td> <td>CU NIPD</td> <td>Level-NC-NC-NC</td>	TLC274AIN	ACTIVE	PDIP	Ν	14	25		CU NIPD	Level-NC-NC-NC
(RoHS) Level-1-220C-UNLIM TLC274BCN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPD Level-NC-NC-NC TLC274BCNSR ACTIVE SO NS 14 2000 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274BID ACTIVE SOIC D 14 50 None CU NIPDAU Level-1-220C-UNLIM TLC274BID ACTIVE SOIC D 14 50 None CU NIPDAU Level-1-220C-UNLIM TLC274BIN ACTIVE SOIC D 14 250 None CU NIPDAU Level-1-220C-UNLIM TLC274CD ACTIVE SOIC D 14 50 Pb-Free CU NIPDAU Level-2-260C-1YEAR/ (RoHS) Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274CDB ACTIVE SSOP DB 14 80 Pb-Free CU NIPDAU Level-2-260C-1YEAR/ (RoHS) TLC274CDR ACTIVE SOIC D 14 2500 Pb-Free CU NIPDAU	TLC274BCD	ACTIVE	SOIC	D	14	50			
(RoHS) TLC274BCNSR ACTIVE SO NS 14 2000 Ph-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274BIDR ACTIVE SOIC D 14 50 None CU NIPDAU Level-1-220C-UNLIM TLC274BIDR ACTIVE SOIC D 14 2500 None CU NIPDAU Level-1-220C-UNLIM TLC274BIN ACTIVE SOIC D 14 25 Pb-Free CU NIPDAU Level-1-220C-UNLIM TLC274CD ACTIVE SOIC D 14 50 Pb-Free CU NIPDAU Level-2-260C-1YEAR/ (RoHS) TLC274CDB ACTIVE SSOP DB 14 80 Pb-Free (CU NIPDAU Level-2-260C-1YEAR/ (RoHS) TLC274CDR ACTIVE SOIC D 14 2000 Pb-Free (CU NIPDAU Level-2-260C-1YEAR/ (RoHS) TLC274CDR ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ (RoHS) TLC274CNSR	TLC274BCDR	ACTIVE	SOIC	D	14	2500			
(RoHS) Level-1-220C-UNLIM TLC274BID ACTIVE SOIC D 14 50 None CU NIPDAU Level-1-220C-UNLIM TLC274BIDR ACTIVE SOIC D 14 2500 None CU NIPDAU Level-1-220C-UNLIM TLC274BIN ACTIVE PDIP N 14 25 Pb-Free CU NIPDAU Level-NC-NC-NC TLC274CD ACTIVE SOIC D 14 50 Pb-Free CU NIPDAU Level-NC-NC-NC TLC274CDB ACTIVE SOIC D 14 80 Pb-Free CU NIPDAU Level-2-260C-1YEAR/ TLC274CDB ACTIVE SSOP DB 14 80 Pb-Free CU NIPDAU Level-2-260C-1YEAR/ TLC274CDBR ACTIVE SSOP DB 14 2000 Pb-Free CU NIPDAU Level-2-260C-1YEAR/ TLC274CDR ACTIVE SOIC D 14 2500 Pb-Free CU NIPDAU Level-2-260C-1YEAR/ TLC274CDR ACTIVE	TLC274BCN	ACTIVE	PDIP	Ν	14	25		CU NIPD	Level-NC-NC-NC
TLC274BIDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274BINACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAULevel-NC-NC-NCTLC274CDACTIVESOICD1450Pb-Free (RoHS)CU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDBACTIVESSOPDB1480Pb-Free (RoHS)CU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDBRACTIVESSOPDB142000Pb-Free (RoHS)CU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDRACTIVESSOPDB142000Pb-Free (RoHS)CU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDRACTIVESOICD142500Pb-Free (ROHS)CU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CNACTIVEPDIPN14250Pb-Free (ROHS)CU NIPDAULevel-NC-NC-NCTLC274CNSLEOBSOLETESONS14NoneCali TiCali TiTLC274CPWACTIVESSOPPW142000Pb-Free (ROHS)CU NIPDAULevel-1-220C-UNLIMTLC274CPWRACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW	TLC274BCNSR	ACTIVE	SO	NS	14	2000			
TLC274BINACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDLevel-NC-NC-NCTLC274CDACTIVESOICD1450Pb-FreeCU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDBACTIVESSOPDB1480Pb-FreeCU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDBRACTIVESSOPDB142000Pb-FreeCU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDRACTIVESOICD142500Pb-FreeCU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CNRACTIVESOICD142500Pb-FreeCU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CNRACTIVEPDIPN14250Pb-FreeCU NIPDAULevel-NC-NC-NCTLC274CNSLEOBSOLETESONS14NoneCall TICall TITLC274CPWACTIVETSSOPPW142000Pb-FreeCU NIPDAULevel-1-220C-UNLIMTLC274CPWLEOBSOLETETSSOPPW142000NoneCu NIPDAULevel-1-220C-UNLIMTLC274CPWRACTIVETSSOPPW142000NoneCu NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVETSSOPPW142000NoneCu NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142000NoneCU NIPDAULevel-1-220C-UNLIM </td <td>TLC274BID</td> <td>ACTIVE</td> <td>SOIC</td> <td>D</td> <td>14</td> <td>50</td> <td>None</td> <td>CU NIPDAU</td> <td>Level-1-220C-UNLIM</td>	TLC274BID	ACTIVE	SOIC	D	14	50	None	CU NIPDAU	Level-1-220C-UNLIM
(RoHS)TLC274CDACTIVESOICD1450Pb-Free (RoHS)CU NIPDAU Level-1-220C-UNLIM Level-1-220C-UNLIMTLC274CDBACTIVESSOPDB1480Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CDBRACTIVESSOPDB142000Pb-Free (RoHS)CU NIPDAU Level-1-220C-UNLIMTLC274CDRACTIVESOICD142500Pb-Free (RoHS)CU NIPDAU Level-1-220C-UNLIMTLC274CNACTIVESOICD14250Pb-Free (RoHS)CU NIPDAU Level-1-220C-UNLIMTLC274CNACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAU Level-1-220C-UNLIMTLC274CNSLEOBSOLETESONS14NoneCall TI (RoHS)Call TI Level-1-220C-UNLIMTLC274CNSRACTIVESONS14NoneCall TI (RoHS)Call TI Level-1-220C-UNLIMTLC274CPWACTIVETSSOPPW1490NoneCU NIPDAU Level-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW142000Green (ROHS & no Sb/Br)CU NIPDAU Level-1-220C-UNLIMTLC274IDACTIVESOICD142500NoneCU NIPDAU Level-1-220C-UNLIMTLC274IDACTIVESOICD142500NoneCU NIPDAU Level-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDA	TLC274BIDR	ACTIVE	SOIC	D	14	2500	None	CU NIPDAU	Level-1-220C-UNLIM
(RoHS) Level-1-220C-UNLIM TLC274CDB ACTIVE SSOP DB 14 80 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274CDBR ACTIVE SSOP DB 14 200 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274CDR ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274CN ACTIVE SOIC D 14 2500 Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPD Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274CNSR ACTIVE SO NS 14 None Call TI Call TI TLC274CNSR ACTIVE SO NS 14 None Call TI Level-2-260C-1YEAR/ Level-1-220C-UNLIM TLC274CPW ACTIVE TSSOP PW 14 90 None CU NIPDAU	TLC274BIN	ACTIVE	PDIP	Ν	14	25		CU NIPD	Level-NC-NC-NC
Image: constraint of the constra	TLC274CD	ACTIVE	SOIC	D	14	50		CU NIPDAU	
Image: constraint of the constra	TLC274CDB	ACTIVE	SSOP	DB	14	80		CU NIPDAU	
Image: constraint of the constra	TLC274CDBR	ACTIVE	SSOP	DB	14	2000		CU NIPDAU	
TLC274CNSLEOBSOLETESONS14NoneCall TICall TITLC274CNSRACTIVESONS142000Pb-Free (RoHS)CU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWLEOBSOLETETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWRACTIVETSSOPPW142000NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW142000Green (RoHS & NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAULevel-1-220C-UNLIMTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIMTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CDR	ACTIVE	SOIC	D	14	2500			
TLC274CNSRACTIVESONS142000Pb-Free (RoHS)CU NIPDAULevel-2-260C-1YEAR/ Level-1-220C-UNLIMTLC274CPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWLEOBSOLETETSSOPPW14NoneCall TICall TICall TITLC274CPWRACTIVETSSOPPW142000NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW142000NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274INACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAULevel-1-220C-UNLIMTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CN	ACTIVE	PDIP	Ν	14	25		CU NIPD	Level-NC-NC-NC
TLC274CPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWLEOBSOLETETSSOPPW14NoneCall TICall TICall TITLC274CPWRACTIVETSSOPPW142000NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-220C-UNLIMTLC274IDACTIVETSSOPPW1450NoneCU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC274IDRACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274INACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAULevel-NC-NC-NCTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CNSLE	OBSOLETE	SO	NS	14		None	Call TI	Call TI
TLC274CPWLEOBSOLETETSSOPPW14NoneCall TICall TITLC274CPWRACTIVETSSOPPW142000NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIMTLC274IDACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274INACTIVESOICD1425Pb-Free (RoHS)CU NIPDLevel-NC-NC-NCTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CNSR	ACTIVE	SO	NS	14	2000			
TLC274CPWRACTIVETSSOPPW142000NoneCU NIPDAULevel-1-220C-UNLIMTLC274CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIMTLC274IDACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274INACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAULevel-NC-NC-NCTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CPW	ACTIVE	TSSOP	PW	14	90	None	CU NIPDAU	Level-1-220C-UNLIM
TLC274CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC274IDACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274INACTIVESOICD1425Pb-Free (RoHS)CU NIPDAULevel-NC-NC-NCTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CPWLE	OBSOLETE	TSSOP	PW	14		None	Call TI	Call TI
TLC274CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC274IDACTIVESOICD1450NoneCU NIPDAULevel-1-220C-UNLIMTLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274INACTIVESOICD1425Pb-Free (RoHS)CU NIPDAULevel-NC-NC-NCTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CPWR	ACTIVE		PW	14	2000	None		Level-1-220C-UNLIM
TLC274IDRACTIVESOICD142500NoneCU NIPDAULevel-1-220C-UNLIMTLC274INACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDLevel-NC-NC-NCTLC274IPWACTIVETSSOPPW1490NoneCU NIPDAULevel-1-220C-UNLIM	TLC274CPWRG4				14				Level-1-260C-UNLIM
TLC274IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPD Level-NC-NC-NC TLC274IPW ACTIVE TSSOP PW 14 90 None CU NIPDAU Level-1-220C-UNLIM	TLC274ID	ACTIVE	SOIC	D	14	50	None	CU NIPDAU	Level-1-220C-UNLIM
(RoHS) TLC274IPW ACTIVE TSSOP PW 14 90 None CU NIPDAU Level-1-220C-UNLIM	TLC274IDR	ACTIVE	SOIC	D	14	2500	None	CU NIPDAU	Level-1-220C-UNLIM
	TLC274IN	ACTIVE	PDIP	Ν	14	25		CU NIPD	Level-NC-NC-NC
TLC274IPWR ACTIVE TSSOP PW 14 2000 None CU NIPDAU Level-1-220C-UNLIM	TLC274IPW	ACTIVE	TSSOP	PW	14	90	None	CU NIPDAU	Level-1-220C-UNLIM
	TLC274IPWR	ACTIVE	TSSOP	PW	14	2000	None	CU NIPDAU	Level-1-220C-UNLIM

22-Feb-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
TLC274MD	ACTIVE	SOIC	D	14	50	None	CU NIPDAU	Level-1-220C-UNLIM
TLC274MDR	ACTIVE	SOIC	D	14	2500	None	CU NIPDAU	Level-1-220C-UNLIM
TLC274MFKB	OBSOLETE	LCCC	FK	20		None	Call TI	Call TI
TLC274MJ	OBSOLETE	CDIP	J	14		None	Call TI	Call TI
TLC274MJB	OBSOLETE	CDIP	J	14		None	Call TI	Call TI
TLC279CD	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC279CDB	ACTIVE	SSOP	DB	14	80	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR/ Level-1-220C-UNLIM
TLC279CDBR	ACTIVE	SSOP	DB	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR Level-1-220C-UNLIM
TLC279CDR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR Level-1-220C-UNLIM
TLC279CN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC279CNSR	ACTIVE	SO	NS	14	2000	Pb-Free (RoHS)	CU NIPD	Level-2-260C-1YEAR Level-1-220C-UNLIM
TLC279ID	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR Level-1-220C-UNLIM
TLC279IDR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1YEAR Level-1-220C-UNLIM
TLC279IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
TLC279MFKB	OBSOLETE	LCCC	FK	20		None	Call TI	Call TI
TLC279MJB	OBSOLETE	CDIP	J	14		None	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI

PACKAGE OPTION ADDENDUM

22-Feb-2005

to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.