BC516 PNP Darlington Transistor

Features

- This device is designed for applications reguiring extremely high current gain at currents to 1 A.
- Sourced from process 61.

1. Collector 2. Base 3. Emitter

Ordering Information

Part Number	Top Mark	Package	Packing Method
BC516-D27Z	BC516	TO-92 3L	Tape and Reel

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	-30	V
V _{CBO}	Collector-Base Voltage	-40	V
V _{EBO}	Emitter-Base Voltage	-10	V
Ι _C	Collector Current - Continuous	-1	А
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Thermal Characteristics⁽¹⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Max.	Unit
PD	Total Device Dissipation, $T_A = 25^{\circ}C$	625	mW
R _{0JA}	Thermal Resistance, Junction-to-Ambient	200	°C/W
R_{\thetaJC}	Thermal Resistance, Junction-to-Case	83.3	°C/W

Note:

1. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics⁽²⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = -2 \text{ mA}, I_{\rm B} = 0$	-30			V
V _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = -100 \ \mu A, \ I_{E} = 0$	-40			V
V _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -10 \ \mu A, \ I_{C} = 0$	-10			V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = -30 \text{ V}, \text{ I}_{E} = 0$			-100	nA
h _{FE}	DC Current Gain	I_{C} = -20 mA, V_{CE} = -2 V	30,000			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_{\rm C}$ = -100 mA, $I_{\rm B}$ = -0.1 mA			-1	V
V _{BE} (on)	Base-Emitter On Voltage	I_{C} = -10 mA, V_{CE} = -5 V			-1.4	V
f _T	Current Gain - Bandwidth Product ⁽³⁾	I _C = -10 mA, V _{CE} = -5 V, f = 100 MHz		200		MHz

Notes:

2. Pulse test: pulse width $\leq 2.0\%$

3. $f_T = Ih_{fe}I \cdot f_{test}$

