
Low Noise Transistors PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	BC559x	BC560C	Unit		
Collector-Emitter Voltage	VCEO	-30	-45	Vdc		
Collector-Base Voltage	VCBO	-30	- 50	Vdc		
Emitter-Base Voltage	VEBO	-5.0		Vdc		
Collector Current — Continuous	IC	-100		mAdc		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		l '''*		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	;	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage (I _C = –10 mAdc, I _B = 0)	BC559B, C BC560C	V(BR)CEO	-30 -45		_ _	Vdc
Collector – Base Breakdown Voltage (I _C = –10 μAdc, I _E = 0)	BC559B, C BC560C	V(BR)CBO	-30 -50	_ _		Vdc
Emitter-Base Breakdown Voltage (I _E = -10 μAdc, I _C = 0)		V(BR)EBO	-5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = -30 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = -30 \text{ Vdc}, I_{E} = 0, T_{A} = +125^{\circ}\text{C})$		ICBO	_ _	_ _	-15 -5.0	nAdc μAdc
Emitter Cutoff Current (V _{EB} = -4.0 Vdc, I _C = 0)		IEBO	_	_	-15	nAdc

BC559B BC559C BC560C

BC559B BC559C BC560C

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS					
DC Current Gain $ (I_{C} = -10 \; \mu \text{Adc}, V_{CE} = -5.0 \; \text{Vdc}) \\ (I_{C} = -2.0 \; \text{mAdc}, V_{CE} = -5.0 \; \text{Vdc}) \\ (I_{C} = -2.0 \; \text{mAdc}, V_{CE} = -5.0 \; \text{Vdc}) \\ BC559C/560C \\ BC559C$	hFE	100 100 180 380	150 270 290 500	— — 460 800	1
Collector-Emitter Saturation Voltage (I _C = -10 mAdc, I _B = -0.5 mAdc) (I _C = -10 mAdc, I _B = see note 1) (I _C = -100 mAdc, I _B = -5.0 mAdc, see note 2)	VCE(sat)		-0.075 -0.3 -0.25	-0.25 -0.6 	Vdc
Base–Emitter Saturation Voltage (I _C = –100 mAdc, I _B = –5.0 mAdc)	V _{BE(sat)}	_	-1.1	_	Vdc
Base–Emitter On Voltage $ \begin{array}{l} (I_C = -10~\mu Adc,~V_{CE} = -5.0~Vdc) \\ (I_C = -100~\mu Adc,~V_{CE} = -5.0~Vdc) \\ (I_C = -2.0~m Adc,~V_{CE} = -5.0~Vdc) \end{array} $	VBE(on)	 _ _0.55	-0.52 -0.55 -0.62	_ _ _0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = -10 mAdc, V _{CE} = -5.0 Vdc, f = 100 MHz)	f⊤	_	250	_	MHz
Collector–Base Capacitance $(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cbo}	_	2.5	_	pF
Small–Signal Current Gain (IC = -2.0 mAdc, VCE = -5.0 V, f = 1.0 kHz) BC559B BC559C/BC560C	h _{fe}	240 450	330 600	500 900	_
Noise Figure (I _C = $-200~\mu$ Adc, V _{CE} = $-5.0~V$ dc, R _S = $2.0~k\Omega$, f = $1.0~kHz$) (I _C = $-200~\mu$ Adc, V _{CE} = $-5.0~V$ dc, R _S = $100~k\Omega$, f = $1.0~kHz$, Δ f = $200~kHz$)	NF ₁ NF ₂	_ _	0.5 —	2.0 10	dB

NOTES:

^{1.} I_B is value for which I_C = -11 mA at V_{CE} = -1.0 V. 2. Pulse test = $300 \ \mu s$ – Duty cycle = 2%.

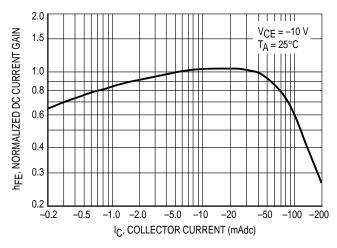


Figure 1. Normalized DC Current Gain

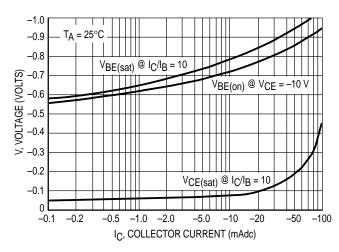


Figure 2. "Saturation" and "On" Voltages

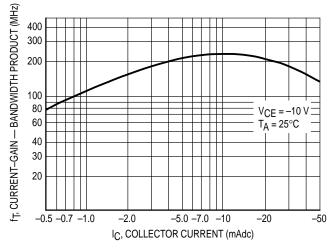


Figure 3. Current-Gain — Bandwidth Product

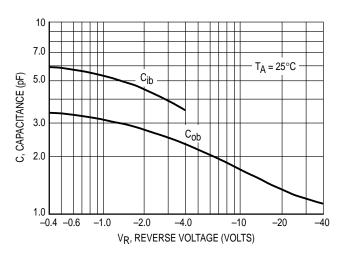


Figure 4. Capacitance

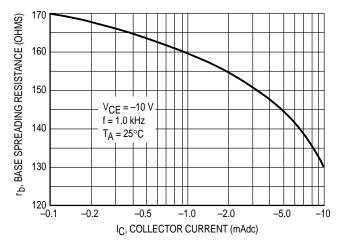
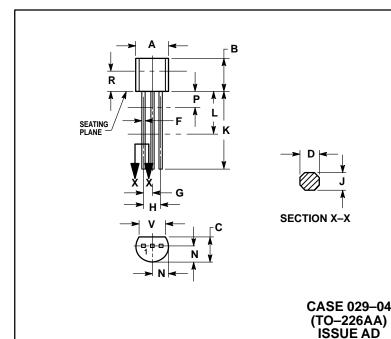



Figure 5. Base Spreading Resistance

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN P AND L. DIMENSION F APPLIES BETWEEN F AND L.
 DIMENSION D AND J APPLY BETWEEN L AND K
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100	_	2.54
R	0.115		2.93	
V	0.135		3 43	

STYLE 17:

PIN 1. COLLECTOR

2. BASE 3. EMITTER

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

 $\textbf{Mfax}^{\text{\tiny{TM}}}\text{: RMFAX0@email.sps.mot.com} - \text{TOUCHTONE } 602-244-6609$

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1,

Mfax is a trademark of Motorola. Inc.

INTERNET: http://motorola.com/sps

 \Diamond BC559B/D